

2 CROSSTALK The Journal of Defense Software Engineering April 2006

Army Simulation Program Balances Agile and
Traditional Methods With Success
These authors discuss how they combined agile and traditional
software development techniques for this award-winning program.
by LTC John Surdu, Ph.D., and Doug J. Parsons

Managing Cultural Changes in Your Organization
Here are some helpful guidelines for managing cultural changes in
your organization whether you implement maturity models, six
sigma, or other techniques to improve your processes.
by Dr. Kenneth D. Shere

Cooperative Appraisals for Capability and Risk
Evaluation
This article describes the authors’ efforts in performing post-award
cooperative appraisals, the lessons learned, and the benefits to both
the government and the appraised organization.
by Diane A. Glaser and Michael D. Barnett

The Qualification of Software Development Tools From
the DO-178B Certification Perspective
This article discusses the qualification of development tools and
the potential impact of this process on the aviation industry.
by Dr. Andrew J. Kornecki and Dr. Janusz Zalewski

Using Line of Balance to Track the Progress of Fixing
Trouble Reports
This author explains how you can handle mounting trouble reports,
meet release dates, resolve bottlenecks, and more by using an old
method to monitor production called Line of Balance in a new way.
by Eduardo Miranda

How to Relate Quality and Reuse in Evolving Systems
This author suggests a model to predict the quality of software
developed over time, where the reusable components are evolving.
by Dr. Ronald J. Leach

When Did Six Sigma Stop Being a Statistical Measure?
This author explores the significance of the differences between
the two meanings of Six Sigma: a process improvement approach,
or a statistical measure for variation.
by Joe Schofield

4

9

14

19

23

27

28

****** ******

Cover Design by
Kent Bingham

DeparDepar tmentstments

ON THE COVER

Alternate Alternate MixMixeses fforor CMMICMMI

Open Open FForumorum

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Bob Zwitch

Joe Jarzombek

Jeff Schwalb

Brent Baxter

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command (NAVAIR) Soft-
ware Systems Support Center.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 18.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

3
13

26

29
30
31

From the Sponsor

Coming Events
Call for Articles

Web Sites
Letters to Editor

Visit CrossTalk at SSTC

SSTC Conference Ad

BackTalk

Additional art services
provided by Janna Jensen.
jensendesigns@aol.com

April 2006 www.stsc.hill.af.mil 3

From the Sponsor

The decision to transition my organization from the Capability Maturity Model® for
Software (SW-CMM®) to CMM Integration (CMMI®) was not an easy one. We had

spent the previous decade immersed in change, growing from an ad-hoc organization
to becoming the first Department of Defense software engineering house to achieve
full SW-CMM Level 5 compliance. It has been a rewarding and arduous journey.
However, the advent of CMMI led us to the proverbial crossroads in the path we were
traveling: Do we plunge in and incorporate the additional CMMI practices into our

organizational processes and in so doing stay at the leading edge of process maturity? Or do we
simply utilize the robust software process improvement infrastructure we had developed to
incrementally get better and better over time? The last question was actually a compelling argu-
ment against transitioning to the CMMI model. After all, the ability to affect continuous process
improvement was the reason we adopted the Level 4 and 5 key practices of the SW-CMM in the
first place.

In the end, the concern over the planned obsolescence of the SW-CMM model and the addi-
tional benefits of CMMI swung the debate in favor of the transition. I knew it was the right
thing to do, but nonetheless had apprehensions about leading our team in that direction. How
would this decision be received by my senior staff and our sizeable work force? I feared it could
be viewed as more change for change’s sake, or simply as an attempt to keep up with the latest
management fad. If handled incorrectly, I could create an entire organization of process
improvement cynics!

I knew that I needed to communicate our goals and objectives to every employee. So I vis-
ited with each unit and explained how we had benefited from the SW-CMM, why we needed to
transition to CMMI, how I expected CMMI would benefit us, how we planned to make the tran-
sition, and how the transition would affect each of them as individuals. I can’t say that everyone
was excited about making the change, but everyone understood why we were doing it; they sup-
ported it and made it happen. More importantly, I discovered that we had developed something
very special over the previous 10 years of incorporating model-based process improvement: We
institutionalized an evolutionary change of sorts across our organization, developing the mod-
ern-day survival equivalent of the chameleon’s ability to adapt to changing environments. We
had created an organizational culture that understands and accepts change. That may ultimate-
ly prove to be one of the greatest values to us that have resulted from our SW-CMM, and now
CMMI, compliance.

Dr. Kenneth Shere observes in his article, Managing Cultural Changes in Your Organization, that
process improvement causes cultural change, change is hard, and that one must have a com-
pelling reason for change. I encourage you to take advantage of his recommendations when
embarking on your next organizational change adventure.

Another recent change being accepted by my organization affects CrossTalk as I move
Tracy Stauder from the CrossTalk publisher position into a supervisory position. Tracy has
supported CrossTalk since 1996 when she took the lead in its production. In cooperation
with our organization’s desire to implement consistent CMM processes, Tracy formalized and
documented CrossTalk’s production processes. Those who have been subscribing to
CrossTalk since before she joined might have noticed that as a result of her leadership,
CrossTalk’s production became much more predictable and the quality also improved.

These improvements reflect Tracy’s outstanding contributions to my organization. Her lead-
ership talents will benefit her new group, and this opportunity will reward her excellent work.
One basic concept of process maturity is that by having established processes in place, an orga-
nization will not depend on one hero to keep it running. Tracy was a hero, but was also true to
our process improvement initiatives, which will ensure CrossTalk’s continued quality in this
evolutionary change.

Transitioning to a New Model?
First Consider Your Organizational Culture

Randy B. Hill
Ogden Air Logistics Center, Co-Sponsor

4 CROSSTALK The Journal of Defense Software Engineering April 2006

Principles and practices associated with
agile methods are not new concepts in

the world of software development.
Extreme Programming (XP), an agile
method itself, has been used successfully
in a variety of software development envi-
ronments. Overall reviews in the software
development community have been
mixed. In his history of the Agile
Manifesto [1], Jim Highsmith uses terms
like organizational anarchists and independent
thinkers to describe the alliance embracing
a unifying set of values. The following is
stated in the Agile Manifesto:

We are uncovering better ways of
developing software by doing it
and helping others do it. Through
this work we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over com-

prehensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value in the
items on the right, we value the
items on the left more. [2]

Pure software development tradition-
alists consider the techniques that many
agile software developers use to follow
these values as an excuse to hack undocu-
mented, poorly designed code. The pure
agile developer would consider the plan-
driven traditionalists responsible for sad-
dling software developers with low-value
processes that hinder or prevent the deliv-
ery of software. Fortunately, we, as soft-
ware developers, do not need to take sides.

There exist many shades of gray in the
spectrum between agile and traditional
methods. The shade you select that best
fits your program depends upon many
factors, including (but not limited to) team
size, criticality of defects, ability to receive
user feedback/interaction, customer
expectations, budget, schedule, and stabil-

ity of requirements. Since these factors are
different from program to program, no
two programs should have identical strate-
gies in their software development.

Traditional methods are geared toward
optimization, predictability, and control.
Agile methods focus on adaptation to
change, flexibility, and innovation. The
new art of software development is find-
ing the appropriate balance point among
the available practices. Figure 1 is a chart
developed by McCabe and Polen [3] based
on a figure from Alistair Cockburn [4]
indicating the relative nature between agile
and conventional projects based on pro-
ject team size and notional cost of system
failure. Included on the chart is the place-
ment of a U.S. Army simulation program,
known as the One Semi-Automated

Forces (OneSAF) Objective System (OOS).
The OOS is a large software-intensive

system (greater than two million lines of
source code) that will be used to support
research and development and train future
U.S. military leaders. In the genesis of the
OOS program development, we research-
ed and considered aspects of agile meth-
ods and XP as well as traditional strategies.
None of these approaches were looked on
as cookbook methodologies, but rather as
a smorgasbord. Those that appeared to be
a good fit were implemented; others were
left on the table.

After more than four years of devel-
opment, the OneSAF program remains
on-track to satisfy requirements and meet
user needs. The OneSAF program has
been awarded the National Training Sys-
tems Association Cross Function Award
for the Integrated Product Team; it was
also selected by CrossTalk as one of
the 2003 U.S. Government’s Top 5 Quality
Software Projects.

Interestingly enough, the customer
base for OOS was more comfortable with
traditional pedantic software-development
methods, even though they contributed to
an environment with ill-defined and often-
changing requirements. The program spent
a great deal of time educating the user rep-
resentatives on XP and other agile meth-
ods. Most have grown to embrace these
methods, but the program still hears some
users making statements like, “Spiral devel-
opment doesn’t work; it has created a con-
figuration management nightmare,” or
“XP has reduced time for testing.” Despite
statements like these, the processes estab-
lished for OOS development – a blend of
agile, extreme, and traditional techniques –
have been instrumental in the program
reaching programmatic and technical goals.

This article is not intended to discuss
the technical capabilities of the OOS;

Army Simulation Program Balances Agile and
Traditional Methods With Success

Doug J. Parsons
Program Executive Office – Simulation Training and Instrumentation

The One Semi-Automated Forces (OneSAF) Objective System is the next generation simulation system planned to provide
the U.S. Army with an entity-level simulation to serve three modeling and simulation domains. Software development of the
OneSAF application has been conducted in a highly robust systems engineering environment based on commercial and gov-
ernment best practices. The OneSAF program has tailored techniques of Extreme Programming (XP) and other agile meth-
ods into a development environment that has resulted in several industry awards, most recently the National Training Systems
Association Cross Function Award for the Integrated Product Team. These externally certified Capability Maturity Model®

Integration Level 5 processes are credited with successful program execution. This article will discuss which XP and other
agile techniques were used, which were not, and why.

Alternate Mixes for CMMI

LTC John Surdu, Ph.D.
U.S. Army

“There exist many
shades of gray in the

spectrum between agile
and traditional methods

... no two programs
should have identical

strategies in their
software development.”

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

Army Simulation Program Balances Agile and Traditional Methods With Success

April 2006 www.stsc.hill.af.mil 5

however, it is important that the reader
understands some of the program’s histo-
ry to note similarities and distinctions with
their own programs, present or past.

Mission Need and the Users
The OOS is the Army’s next generation
simulation system that can represent a full
range of military operations, systems, and
control processes. It is an entity-level sim-
ulation, meaning that it can simulate the
activities of individual combatants or
vehicles (as opposed to aggregate-level
simulations, which represent combatants
and vehicles as groupings). It will also pro-
vide the appropriate representations of
the physical environment (e.g., terrain fea-
tures, weather, and illumination) and its
effect on simulated activities and behav-
iors.

The OOS is unique among Army sim-
ulations in that it is designed for use by
three distinct Army Modeling and Simu-
lation (M&S) domains. Specifically, the
Advanced Concepts and Requirements
domain uses M&S for experimentation
and analysis on Army doctrine and force-
related concepts. The Research, Develop-
ment, and Acquisition domain uses M&S
for acquisition analyses focused on equip-
ping and supporting currently fielded and
future forces. Finally, the Training, Exer-
cises, and Military Operations domain
employs M&S to train forces. It does so
using live simulation (actual equipment on
training ranges), virtual simulation
(immersing the trainee into a synthetic
environment), and constructive simulation
(war games using computer-generated
forces).

There exist two factors relative to our
users that inherently pull the OOS devel-
opment toward the center of the agile-
conventional project spectrum. First,
OOS will be used extensively for analysis
and experimentation. Analysts and re-
search scientists rely on a robust set of
documentation to support verification and
validation (V&V). For these users, it is
critical to understand how OOS models
work. Secondly, the OneSAF business
model includes the distribution of source
code with release of the software baseline
[5]. The intention is to create an environ-
ment that will optimize the ability for
extended capabilities created by the M&S
community to be reintegrated into the
baseline. Agile projects tend to be light on
documentation and process. OOS will
include a robust set of documentation and
tools to support V&V. In addition,
process description and documentation to
aid and guide external developers of the
baseline will also be provided.

A New Approach
While the use of commercial best prac-
tices seems intuitive, five years ago this
was quite unique in Department of
Defense (DoD) software development.
Some of the changes were simple. The
approach toward programmatic documen-
tation was a minimalist one. Some
approaches were considered heretical: uti-
lizing the OneSAF program manager
(PM) as the manager of the OOS task
orders (similar to a prime contractor), and
establishing an integrated development
environment (IDE), which made the
adoption of many agile methods and XP
practices possible.

PM Is the Prime
A typical approach in DoD software
development is for the government to
select a single contractor who specifies its
own set of subcontractors under a large,
monolithic contract. In contrast, PM
OneSAF was allowed to complete a vari-
ety of task orders under an Indefinite
Delivery, Indefinite Quantity contract and
manage it as the lead systems integrator.
The advantage is that the government can
pick a best-of-breed contractor rather than
settle for a sub-contractor who may or
may not be the best choice. During the
past four years, 26 different contractor
companies have been contracted to work
on different parts of the OneSAF soft-
ware. The contracts range in scope and
include short-term studies, architecture
review, knowledge acquisition, architec-
ture and integration, model development,
and integration and test.

An initial concern was that the con-
tractors would disagree on the means to
resolve issues and the process would grind
to a halt. Associate Contractor Agree-
ments (ACAs) were signed by each task
order organization; however, an ACA is
only a piece of paper that asks a contrac-
tor to play nice. To help socialize the ACAs,
the contracts were awarded over the space

of 18 months. The Architecture and
Integration (A&I) contract was awarded
first, and the processes, tools, and proce-
dures were established. When new con-
tractors came on board, they were inte-
grated into existing processes so that we
avoided food fights about whose processes
were better than others. This does not
imply that existing processes were never
modified; we remained committed
throughout execution to continuous
process improvement and aggressively
sought new ideas.

Three factors contributed to the ability
for PM OneSAF to successfully act as the
prime. First, the OneSAF government
team is involved in the day-to-day develop-
ment process. This allows informed and
timely decisions to be made on behalf of
the PM. Second, PM OneSAF empowered
the A&I contractor with a great deal of
flexibility to establish development, inte-
gration, and test processes from industry
best practices: There were no government-
mandated processes heavy with valueless
documentation. Third, the PM sought
technically qualified folks across the
breadth of the program. Not only are
OneSAF engineers truly technical with
advanced degrees in software-related disci-
plines and years of real engineering experi-
ence, but OneSAF managers and project
directors were recruited from engineering.
As there are numerous disincentives for
technical people within the Army, it was
quite challenging to find even the small
number of qualified engineers we needed.

It is unclear whether these unique busi-
ness processes alone were the major con-
tributor to successful execution or whether
the employment of agile methods was the
key. It is clear, however, that without these
new ways of doing business, it is unlikely
that agile methods would have been
employed or embraced.

IDE
To support an effective and efficient soft-

Integration and Test Development
Knowledge Acquisition/
Knowledge Engineering

Build X-1 Build X Build X+1

Figure 2: Three-Build Process for Creating a Functional Capability in OOS

Conventional

Projects

Agile

Projects

OOS

Loss of Life

$$$

$

Annoyance

 10 50 100 1,000

C
o

s
t

o
f

S
y

s
te

m
F

a
il
u

r
e

Project Team Size

Figure 1: Spectrum for Project Type Considering Defect Cost and Team Size

Alternate Mixes for CMMI

6 CROSSTALK The Journal of Defense Software Engineering April 2006

ware development process, PM OneSAF
established an environment that brought
together domain/user representatives,
government engineers, PMs, and contract
or software developers. All of these teams
are collocated in a single facility. A task
order for facility operation and sustain-
ment was intentionally awarded to a con-
tractor outside any of those developing
software to send the message that the IDE
was neutral turf. Over the past four years,
there have been as many as a dozen indi-
vidual task orders under execution at any
one time. From these task orders, there
have been more than 100 software engi-
neers working in concert to develop a
baseline.

Applying Agile Methods and
XP to OneSAF
Communication and Collocation
The Agile Manifesto states that in agile
software development, the following
should occur [6]:
• Business people and developers must

work together daily throughout the
project.

• The most efficient and effective
method of conveying information to
and within a development team is face-
to-face conversation.
Paulk states that agile methods gener-

ally apply to smaller teams working in the
face of vague and/or dynamic require-
ments [7]. He also states that agile teams
are expected to be collocated with typical-
ly fewer than 10 members. XP rules also
indicate that the customer should always
be available and that a stand-up meeting
starts each day to communicate problems,
solutions, and promote team focus.

OOS development has practiced collo-
cation from its inception. As mentioned
earlier, the government program office is
the prime for OOS, and there are numer-
ous contractors working the program. All
contractors from the 10 to 12 companies
working on OOS are collocated in the
IDE facility. In addition, the combat
developer (requirements steward and cus-
tomer), customer representatives (from
the three Army M&S domains), and gov-
ernment engineers and managers are col-
located in the same facility. It often takes a
newcomer to the program months to find
out what company everyone works for
because on Team OneSAF we concentrate

on functional decomposition of the prob-
lem more than on which company is
working a portion of the problem.

Through the use of ACAs, communi-
cation between the various organizations
is smooth and seamless. The face-to-face
coordination referred to in the Agile
Manifesto occurs habitually in the IDE. A
member of the combat development
team said recently, “Much of the work on
OOS occurs in the hallways.” Informal
meetings with the right two or three peo-
ple in the hallway often work through
some technical or inter-team coordination
issue in a few minutes rather than sched-
uling a meeting with dozens of folks.
OOS developers are encouraged to get up
and walk down the hallway if they have an
issue. From the earliest days of OOS
development, the OneSAF PM Office
prohibited weekly scheduled meetings on
Wednesday through Friday. A lesson
learned from other program development
efforts was that engineers tended to save
communication with other people on the
team until the scheduled meeting.
Intentionally, this forced the engineers to
meet more frequently in desk-side or hall-
way meetings.

Spiral Development: Builds, Blocks,
and Early Delivery
In discussing requirements, McCabe and
Polen state:

… the customer may hardly grasp
the problem, much less the best
system to address it. Therefore,
requirements are likely to be vague
or speculative when they should be
specific. [3]

Recognizing that the customers’ require-
ments and desires would evolve as they
saw working prototypes (or alpha versions
of the software), OOS adapted a spiral
development methodology. Paulk noted:

… with their emphasis on address-
ing requirements volatility, agile
methodologies could be a powerful
synthesis of practices that DoD
contractors could leverage to make
planning more responsive to
change. [7]

The Agile Manifesto supports the

notion of spiral development with the fol-
lowing tenets [6]:
• The highest priority is to satisfy the

customer though early and continuous
delivery of valuable software.

• Welcome changing requirements, even
late in development.

• Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the
shorter timescale.

• Working software is the primary mea-
sure of progress.
XP rules and practices concerning the

software development process include the
following [8]:
• Make frequent small releases.
• The project is divided into iterations.
• Integrate often.
• Iteration planning starts each iteration.
• Never add functionality early.
• Code must be written to agreed-upon

standards.
The development methodology adopt-

ed for OOS was one of frequent itera-
tions, or spirals. It involved breaking the
overall program into a series of eight- to
10-week builds. Several of these builds
were then designated as user assessment
baselines that were made available to users
for assessment and azimuth correction.
User involvement is discussed below.

The early and frequent delivery of
builds was the OOS’ way of implementing
these tenets of the manifesto. Being able
to see working code – even if that code
initially was focused on architecture and
tools rather than interesting military capa-
bility – gave the users confidence in the
process and the development team. As
McCabe and Polen state, “Until a usable
system is delivered, the customer has
nothing to show for its investment” [3].

Paulk asserted the following:

Agile methodologies, with their
rapid iterations, require continual
planning. Customer collaboration
and responsiveness to change are
tightly linked, if perhaps inconsis-
tent with typical government-con-
tractor relationships. [7]

The overall, strategic program requirements
and overall architecture changed little over
the four years of software development;
however, the specific, tactical requirements
and many of the smaller design decisions
were made as late as possible.

The overall goals of a particular block
were locked down during the block plan-
ning a few weeks before the beginning of
the block, not at the beginning of the pro-
gram in a big bang. Additionally, the fine-

Figure 2: Three-Build Process for Creating a Functional Capability in OOS

Integration and Test Development
Knowledge Acquisition/
Knowledge Engineering

Build X-1 Build X Build X+1

Figure 2: Three-Build Process for Creating a Functional Capability in OOS

Conventional

Projects

Agile

Projects

OOS

Loss of Life

$$$

$

Annoyance

 10 50 100 1,000

C
o

s
t

o
f

S
y

s
te

m
F

a
il
u

r
e

Project Team Size

Army Simulation Program Balances Agile and Traditional Methods With Success

April 2006 www.stsc.hill.af.mil 7

grained requirements and design of a build
were finalized only one build before execu-
tion. While executing Build X, the program
is planning Build X+1 and testing Build X-
1. A change in requirements, therefore,
could be reacted to within 16 weeks, not a
year. Figure 2 illustrates this process.

A major advantage of a spiral method-
ology was the ability of the program to
adapt to requirements changes. McCabe
and Polen asserted, “When needs are
changing, the value of the original system
as specified, however optimum it was at
the time of its conception, depreciates
daily” [3]. During program development,
the Army made a radical change in organi-
zation to a focus on Brigade Combat
Teams. The OOS program was able to
rapidly shift focus between spirals so that
it would be delivered with the new force
structure rather than the old. Additionally,
the threat faced by U.S. forces changed.
OOS was able to curtail representation of
older, Soviet-style opposing forces and
implement a more contemporary, uncon-
ventional enemy.

Customer Involvement in
Development
Turner and Boehm state:

One of the major differences
between agile and plan-driven
methods is that agile methods
strongly emphasize having dedicat-
ed, collocated customer represen-
tatives, while plan-driven methods
count on a good deal of up-front,
customer-developer work on con-
tractual plans and specifications. [9]

Because the customer representatives are
collocated in the IDE, they participate in
all our meetings, and are available to
answer questions or reach back into their
customer base for feedback and input.

Several of the OOS builds were desig-
nated User Assessment Baselines (UAB).
These UABs were available in the IDE for
users to evaluate. In addition, a number of
assessment events were held in the IDE
during which users from around the Army
were invited to participate. Finally, the PM
office took the software to user sites for
more formal assessments. It may seem
obvious to some, but users use the soft-
ware differently than engineers and devel-
opers. While the users often tried to treat
these developmental assessments as oper-
ational tests, resulting in often vitriolic
feedback, the events were excellent oppor-

tunities to allow users to identify bugs in
the software in an operational-like envi-
ronment.

Documentation Versus Working Code
OOS software builds can vary between
eight and 10 weeks in duration, depending
upon the difficulty of the tasks in that
build, and how they fit in the timeframe of
the block. Since Build 4, OOS has had
working software that could be demon-
strated and made available for user feed-
back. As McCabe and Polen state, “Your
only real knowledge comes from a work-
ing system” [3].

Having working code since Build 4
reflects the agile method’s bias toward
working code rather than documentation-
centric development. However, extensive
design documentation, knowledge acquisi-
tion documentation, and technical notes
do exist and are reposed in <www.One
SAF.net>, the program’s collaborative

information warehouse. In addition, user
documentation is maintained in a form
that is simultaneously compiled into a
users’ manual and online help.

Paulk states that when employing agile
methods, a project must:

Decide where to place the balance
point in documentation and plan-
ning to alleviate the concerns of
the stakeholders (and regulatory
requirements) while achieving the
flexibility and benefits promised in
the agile philosophy. [7]

This is not to imply that the OOS soft-
ware is not adequately documented. The
A&I contractor has been externally certi-
fied at Capability Maturity Model
Integration (CMMI®) Level 5, so the

development processes are well docu-
mented. Not only are the processes docu-
mented, but the results of the processes
(the development products/artifacts) are
captured. Metrics are captured on the exe-
cution of processes as well, and the A&I
contractor conducts periodic defect preven-
tion sessions to examine and correct the
root cause of common issues.

The documentation of these processes
and products is captured in a Web-enabled
manual known as the Electronic Process
Guide. The artifacts that document devel-
opers’ adherence to these processes are
found in several Web-enabled repositories
such as the online Software Development
Folders, Web-based tracking tools for
action items, trouble reports, defects, peer
reviews, and risks. The very nature of hav-
ing a Web-enabled tool set reduced the
burden on developers for complying with
these processes and enabled communica-
tion across teams.

Extreme Testing
With respect to testing, agile methods
indicate the projects should include the
following [8]:
• Code the unit test first.
• All code must have unit tests that must

pass before being released.
• When a bug is found, tests are created.
• Acceptance tests are run often and the

score is published.
Whenever an OOS developer commits his
or her changes to configuration manage-
ment (i.e., Concurrent Versions System), a
tool – called BuildBoy – builds the soft-
ware for Linux, Windows, and Solaris and
runs nearly 3,000 automated tests on each
operating system. If the build fails, the
developer and his or her supervisor are
sent an e-mail. The developer can then ref-
erence the BuildBoy Web page to deter-
mine the nature of the failure and take cor-
rective action. In this way, the software is
built and subjected to unit and integration
tests on average of eight times a day.

McCabe and Polen state:

Writing automated unit tests first is
a clever way of inducing develop-
ers to not only unit test their code
efficiently, but also to write their
code efficiently without superflu-
ous logic. [3]

While we agree in concept, this is an area
in which we need improvement. All code
is delivered at the end of a build with
appropriate tests, and some of the teams
do build the tests first, but we are not con-
sistently using the methodology of build-
ing the test first.

“Being able to see
working code – even if
that code initially was

focused on architecture
and tools rather than
interesting military

capability – gave the
users confidence in the

process and the
development team.”

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Alternate Mixes for CMMI

8 CROSSTALK The Journal of Defense Software Engineering April 2006

With respect to the tenet of building a
test when a bug is found, we have adapted
this process to large, complex software.
While we do not build a test for every bug
that is fixed, when we find the same pat-
tern of bug appears many times, we build
an automated test to trap it.

Conclusion
The OOS software is being developed
through a combination of agile, extreme,
and traditional techniques. We have not
blindly adopted all of the techniques and
tenets of these agile approaches; however,
we have used a great many of them. The
program still has room for improvement in
some areas, and our CMMI Level 5 contin-
uous process improvement is ever vigilant
for opportunities to do so. In particular, we
are in need of more agile testing and an
increased number of automated tests.

The unique blend of these techniques
has been instrumental in the award-win-
ning success of the OOS development
effort. Some readers may wonder which of
these techniques were most beneficial and
if they could be applied to other programs
with equal success. The answer to both of
these questions is based upon our original
premise: the best method depends upon
the nature of the program itself. Program
characteristics such as team size and
impact of system failure are evident; how-
ever, each PM needs to consider other
issues that define the technical, program-
matic, and political landscape: Will upper
management support less conventional
techniques? Does the government team
have the appropriate skill set to work
closely with the software development
team, not just monitor contractor activity
and check end results? Are the users open
to agile methods and willing to actively
participate throughout the process?

The best methods are as unique as the
programs themselves. Since our program
initiation, we have engaged with other
organizations that have tried to emulate
the form – without the substance – of
these agile methods and innovative busi-
ness processes; their successes have been
limited. The authors considered what
methods and techniques worked best for
the OneSAF program. After pondering
this question, the answer illustrates the
shades of gray between traditional and
agile methods. Strictly following the
CMMI Level 5 processes (traditional) and
the individual interactions (agile) among
users, developers, and government repre-
sentatives were essential contributors.
Four years ago we did not know what
would work best, or what would work at
all for that matter. However, we were will-

ing to try something innovative, willing to
make changes along the way, and bold
enough to see it through.u

References
1. Highsmith, J. “History: The Agile

Manifesto.” The Agile Alliance, 2001
<http://agilemanifesto.org/history.
html>.

2. Agile Alliance. “Agile Software Devel-
opment Manifesto.” Agile Alliance, 13
Feb. 2001 <www.agilemanifesto.org>.

3. McCabe, R., and M. Polen. “Should
You Be More Agile?” CrossTalk
Oct. 2002 <www.stsc.hill.af.mil/
crosstalk/2002/10/mccabe.html>.

4. Cockburn, Alistair. “Learning From
Agile Software Development – Part
One.”CrossTalkOct. 2002 <www.
stsc.hill.af.mil/crosstalk/2002/10/
cockburn.html>.

5. Parsons, D., and R. Wittman. “Open
Source Opens Opportunities for
Army’s Simulation System.” Cross-
Talk Jan. 2005 <www.stsc.hill.af.mil/
crosstalk/2005/01/0501parsons. html>.

6. Agile Alliance. “Principles Behind the
Agile Manifesto.” Agile Alliance, 30
May 2005 <http://agilemanifesto.org/
principles.html>.

7. Paulk, M. “Agile Methodologies and
Process Discipline.” CrossTalk
Oct. 2002 <www.stsc.hill.af.mil/cross
talk/2002/10/paulk.html>.

8. Wells, D. “The Rules and Practices of
Extreme Programming.” Extreme
Programming. 28 Feb. 2004 <www.
extremeprogramming.org/rules.html>.

9. Turner, R., and B. Boehm. “People
Factors in Software Management:
Lessons From Comparing Agile and
Plan-Driven Methods.” CrossTalk
Dec. 2003 <www.stsc.hill.af.mil/
crosstalk/2003/12/0312turner.html>.

About the Authors

LTC John “Buck”
Surdu, Ph.D., is the
product manager for the
One Semi-Automated
Forces Objective System.
Originally commissioned

as an infantry lieutenant, Surdu served in
operational assignments in the 82nd
Airborne Division, Europe, and Korea.
He worked as a research scientist at the
Army Research Laboratory and a senior
research scientist and assistant professor
in the Information Technology and
Operations Center within the Depart-
ment of Electrical Engineering and
Computer Science at West Point. He has
a Bachelor of Science in computer sci-
ence from the United States Military
Academy, West Point, a Master of
Science in computer science from
Florida State University, a Master of
Business Administration from Columbus
State University, and a doctorate in com-
puter science from Texas A&M
University.

12350 Research PKWY
Orlando, FL 32826-3276
Phone: (407) 384-5103
Fax: (321) 235-1484
E-mail: john.surdu@us.army.mil

Doug J. Parsons is the
lead engineer of the
Intelligent Simulation
Systems Team at the U.S.
Army Program Executive
Office for Simulation,

Training, and Instrumentation. His pri-
mary focus is toward the successful
development of the One Semi-Auto-
mated Forces Objective System. Parsons
has a Bachelor of Science in mechanical
engineering from North Dakota State
University, a Master of Science in sys-
tems management from Florida Institute
of Technology, and a Master of Science
in industrial engineering from the
University of Central Florida.

Program Executive Office –
Simulation Training and
Instrumentation (PEO-STRI)
12350 Research PKWY
Orlando, FL 32826-3276
Phone: (407) 384-3821
E-mail: doug.parsons@us.army.mil

Did this article pique your interest?
You can hear more at the Eighteenth
Annual Systems and Software Technolo-
gy Conference May 1-4, 2006, in Salt
Lake City, UT. Doug Parsons will pre-
sent in Track 7, Room 251A-C on
Thursday, May 4, at 8 a.m.

April 2006 www.stsc.hill.af.mil 9

In earlier articles [1, 2], discussions on
how Lean Six Sigma (LSS) affects the

government, and how LSS compares to
the Capability Maturity Model® (CMM®)
have been presented. Key aspects of why
LSS has been successful include the fol-
lowing:
1. It has an external focus based on lis-

tening to the voice of the customer.
2. The cost of poor quality is explicitly

considered.
3. LSS is essentially good systems engi-

neering in which the methodology is
institutionalized.

4. Training is an inherent part of the
methodology.

Many articles on capability maturity mod-
els have been published in CrossTalk.
The internal focus and structure of these
are complementary to LSS. Both
approaches have been used successfully,
and when combined provide a powerful
basis for producing effective products
with low time and budget variances.

This claim has been recognized. For
specific examples, the reader can search
the Software Engineering Institute Web
site at <www.sei.cmu.edu>. One of the
companies publishing results on that site
is Raytheon. Specifically, it is their North
Texas Software division, located in Plano
and McKinney.

While these methods are useful and
there exists substantial data from both
government oriented programs and pure-
ly commercial programs to prove it, they
inherently involve changing the way orga-
nizations conduct business.

The change process is very taxing.
People at all levels of an organization tend
to resist change. This article explores why
change is necessary, and provides some
information on what it takes to enact
change. This article is intended for leaders
of organizations who are grappling with
change. The topics discussed are the fol-
lowing: change is hard, facilitating change,
strategic thinking, and first-year strategy.
There are many books and journal articles
written on these topics. A high-level dis-
cussion is provided here to provoke
thought and additional reading.

Change Is Hard
Change affects people’s lives. Reaction to
change varies from the view expressed by
the comic strip character, Pogo, “The cer-
tainty of misery is better than the misery
of uncertainty,” to the view of the late
Jerry Garcia of the rock band The
Grateful Dead, “Somebody has to do
something, and it’s incredibly pathetic that
it has to be us” [3]. To successfully imple-
ment change, it is necessary to understand

the urgency for change and to adopt a
positive attitude about change. Under-
standing how change affects people in an
organization is a key component of break-
ing down resistance.

Some of the causes for the urgency of
change could be the following:
• Your customers are dissatisfied (and

may be considering alternative
sources).

• Budget issues.
• Commission reports such as the Space

Commission [4], or reports of the
Defense Science Board.

• Validity of your organization’s busi-

ness assumptions.
• Self-inflicted pain.

Many organizations do not have a clear
understanding of who are their custom-
ers, partners, and stakeholders. Conse-
quently, it is difficult to know underlying
causes for dissatisfaction and key issues
that need to be addressed. In this article,
the term customers refers to stakeholders,
partners, service or product users, and
operators.

Dissatisfaction occurs at many levels
and for a variety of reasons. Sometimes an
organization thinks that everything is fine
because its average product or service
quality is high, but people do not experi-
ence the average – they experience the
variability. For example, telephone service
is expected to be excellent. If a builder
accidentally cuts a telephone cable, leaving
thousands of users without service for
five days, the telephone company is going
to have a lot of unhappy customers.
Customers might understand a one-day
outage, but rapidly lose patience with
longer periods. In areas where alternative
service is provided by cable television
companies, the telephone company can
lose substantial business through no fault
of its own.

Determining customer satisfaction as a
predictive measure is very difficult.
Organizations need to conduct surveys,
talk to customers, and collect data. A com-
pany’s sales are a backward-looking indica-
tor of customer satisfaction. When people
stop buying the product, it is frequently
too late to regain market share. The cur-
rent state of the American auto industry is
a classic example of the result of cus-
tomer dissatisfaction.

Sometimes customers are dissatisfied
because they do not fully understand the
services provided. Other times, dissatis-
faction might be related to budget issues.
Each organization needs to approach cus-
tomer satisfaction from a variety of per-
spectives.

Typical budget issues include not
understanding the cost of doing business,
and being unable to defend an organiza-
tion’s budget to Congress. The latter issue

Managing Cultural Changes in Your Organization

Maturity models are great; they provide a mostly technical road map for what we need to do to improve processes. Lean Six
Sigma is also great – it provides a methodology for how to improve processes. The problem is that process improvement caus-
es cultural changes. This article provides guidelines for managing cultural changes in your organization.

Dr. Kenneth D. Shere
The Aerospace Corporation

“To successfully
implement change, it is
necessary to understand
the urgency for change,
and to adopt a positive
attitude about change.

Understanding how
change affects the

people in an
organization is a key

component of breaking
down resistance.”

Alternate Mixes for CMMI

10 CROSSTALK The Journal of Defense Software Engineering April 2006

is related to stakeholders not understand-
ing all the services provided and the value
of these services.

Being able to demonstrate that an
organization’s processes are lean can go a
long way toward defending its budget. It
enables the organization to specify the ser-
vices that will be lost as a function of bud-
get reduction.

This concept also applies to acquisi-
tion. For example, if an organization were
to acquire the next-generation weather
satellite and experienced a significant bud-
get cut, the organization should be able to
tell Congress of the impact. The organiza-
tion should be able to specify how this
reduction affects the products that can be
produced, and how these products are
related to weather phenomena, agribusi-
ness, transportation, and energy.

Reasons for budget reductions include
cost overruns by major programs (in other
parts of the agency or a related agency)
and pressures to balance a budget. The lat-
ter is especially prevalent in years with
major national catastrophes such as
Hurricane Katrina and years in which wars
are being fought.

Sometimes the urgency for change is
provided by independent commission
reports. For example, the Space Commis-
sion reported on significant problems
associated with space programs and made
a number of suggestions related to U.S.
Air Force space programs and the
National Reconnaissance Office (NRO).
This report stated that the NRO has lost
its edge. The chairman of this committee,
Donald Rumsfeld, needed to resign a little
more than one week before the report was
delivered to the secretary of defense
because he was to be sworn in as the sec-
retary of defense. Needless to say, changes
have occurred as a result of this report.

Space Commission reports and other
congressional actions are indicators that
the organization’s business environment
has changed – that its business assump-
tions may no longer be valid. There are
many examples of organizations – some-
times whole industries – that fail to under-
stand the changes to their environment.
The result is frequently obsolete or incor-
rect business models. Examples include
the following:
• The failure of General Motors (GM)

to recognize competition from Japan
(and other issues).

• The bankruptcy or near bankruptcy of
all major airlines because they use a
hub-and-spoke system and have very
high wages. These airlines simply can-
not compete with the business model
of discount airlines represented by Jet

Blue and Southwest.
• Full-service stock brokerage firms

have lost substantial business to dis-
count firms and online trading.

• America Online (AOL) is still trying to
understand what its business should be
in the light of high-speed modems and
excellent, free search engines. Google
recently purchased 10 percent of AOL’s
stock and could become the driver for
defining the AOL business model.

• Wang computers had a virtual strangle-
hold on word processing and office
automation in the 1970s. They insisted
on maintaining a proprietary system
and could not survive the competition
of Microsoft Word and Word Perfect.
The final cause for urgency of change

discussed here is self-inflicted pain, which
comes from a variety of sources. A prima-
ry source of self-inflicted pain is making it
difficult to conduct business with your
organization. If your organization pro-
vides services, how does it compare with
the expected service that people receive

from national companies like Nieman
Marcus or Marriott? Even though the
business areas are different, your organiza-
tion can be held to that standard because
your customers and stakeholders might
patronize these companies.

Sometimes, self-inflicted pain arises
from customers and stakeholders not
understanding the services provided.
These situations might be resolved
through a good education or marketing
effort. Other sources of self-inflicted pain
are derived from leadership actions. For
example, in one report a Navy captain ran
a guided missile cruiser over a large sub-
merged rock, injuring several crew mem-
bers. Sailors on the bridge suspected the
ship was headed for the rock, but they
were afraid to tell the captain to change

course for fear of being wrong [4].
As you look at the urgency for change,

tie these various causes together. Would
the government be better off outsourcing
your services? The answer is usually no,
but it needs to be supported with data.

Facilitating Change
In a related article, the co-author and I
stated, “The three most important
approaches to changing culture are com-
munications, communications, communi-
cations” [5]. My new and improved list con-
sists of 12 items, but the first nine are
heavily intertwined:
1. Leadership.
2. Leadership.
3. Leadership.
4. Commitment.
5. Commitment.
6. Commitment.
7. Communications.
8. Communications.
9. Communications
10. Strategic thinking.
11. Consistency.
12. Understanding the data.

Without fully committed leaders, any
process improvement or change initiative
will fail. It is simply not worth proceeding
if you do not have this type of commit-
ment. The leader of a small group might
be able to improve the processes used by
his or her group, but a sustained major
change requires commitment at the top.

One day in 1993, I bumped into an
acquaintance who was president and chief
operating officer of a major corporation.
He said that he was leaving the next day to
attend a weeklong conference on business
process reengineering (BPR). Think about
the cost of attending that conference.
That week corresponds to 2 percent of his
time for the entire year. Think about all of
the other items commanding his attention
that will not be done during that week.
Surely every vice president of that compa-
ny knew that he was attending the confer-
ence, and understood how seriously he
was taking BPR.

Somewhat over a year later, I asked this
person about his accomplishments. The
results were somewhat amazing – he com-
pletely reengineered a major production
process (investing about $125 million) and
entered two new, but related, businesses.
Success was achieved because of leader-
ship and commitment at the top.

Communication is also critical to suc-
cess. To enact change, it is necessary to
talk to everyone in the organization and con-
vey the urgency for change. It is also nec-
essary to listen to people and to under-
stand their concerns. These concerns can

“Without fully
committed leaders,

any process
improvement or change

initiative will fail. It is
simply not worth

proceeding if you do
not have this type of

commitment.”

Managing Cultural Changes in Your Organization

April 2006 www.stsc.hill.af.mil 11

be somewhat relieved by telling a story
about the future. Describe your vision and
why it is necessary. The Declaration of
Independence tells the story of why
change was necessary. The U.S. Consti-
tution is a formal story of the political
utopia envisioned by our founding fathers
[6]. These stories tell the urgency for
change and how people will be affected by
the change.

Resistance is normal. Recipients of bad
news go through a series of psychological
states: denial, anger, bargaining, despair,
and acceptance. In the final state they can
act. Change leaders need to understand
resistance to change and to communicate
with people in ways that mitigate their
resistance. Much of this communication
involves explaining to people how they will
be affected by the change.

Gen. Gordon Sullivan (retired) dis-
cusses leadership resistance in terms of
three traps: doing things too well, being in
the wrong business, and making yesterday
perfect [7].

When a company is being run well, it is
hard to recognize the need for change.
Before Jack Welch became chief executive
officer (CEO) of General Electric (GE),
his predecessor was viewed as the top
CEO in the country. Every management
school viewed GE as an example because
they were highly diversified, immune to
the ups and downs of business cycles, and
regularly grew between 2 percent and 3
percent per year. It was as good as it gets.

Welch recognized the need for change.
He immediately said that GE performance
was horrid. GE needed to grow at double-
digit rates. GE went through a dramatic
change, going from 80 percent manufac-
turing and 20 percent services in 1982 to
80 percent services and 20 percent manu-
facturing in 2002. During this 20-year peri-
od, the company’s stock price soared.

Being in the wrong business consists of
not understanding the implications of
change. Alfred Sloan said that GM was in
the business of making money, not cars. He
also said that success comes not from tech-
nological leadership, but from having the
resources to quickly adopt the innovations
successfully introduced by others [8].
Consider the situation of GM today – their
bond rating has been reduced to junk.

Making yesterday perfect causes peo-
ple to ignore or rationalize data about their
environment. In military terms, making
yesterday perfect corresponds to fighting
yesterday’s war. The entire thrust of mov-
ing the U.S. Army into the digital age – the
item that occupied most of Sullivan’s time
when he was chief of staff – has been to
avoid future failure by being prepared for

future wars.
Summarizing this section, process

improvement involves change. Leaders
must be committed to change and be able
to communicate the urgency for change to
everybody in their organization. They
need to listen, think strategically, have a
reward system that is consistent with their
goals, and understand the environmental
data to which they are exposed.

Strategic Thinking
Strategic thinking, which in a sense
encompasses leadership, commitment,
and communications, is best described in
terms of the trigraph depicted in Figure 11.
In terms of change, the order of strategic
thinking is strategy, structure, and culture.
Culture and structure are briefly dis-
cussed. Most of the discussion in this sec-
tion focuses on strategy because that
comes first.

There are a variety of definitions for
culture, but most of them are related to
growth or transmitted behavior. At the
workplace, culture is embodied in the
rules taught to the next generation of
workers. Understanding changes to these
rules for success takes a long time. People
need to observe whether the rewards are
actually in accordance with the communi-
cated changes. They also need to observe
changes in the organization’s structure.

It is reasonable to expect culture
change to take from five to seven years to
be fully realized. Culture change depends
on changes to the organizational structure
and to the strategy. The amount of time it
takes for change cited here is based on the
author’s observations and general reading.
The author is unaware of specific studies
that identify time required for change.

The most important step for changing
culture is to walk the talk (pardon the
pun). Employees always know the truth
because they observe leaders’ actions. In
1989, a survey showed that 43 percent of

employees believed that management lies
and cheats. Another survey taken in 1992
showed that 64 percent of the employees
think that management lies [9].

The organization’s actual values are
communicated through actions – not
posters. For example, does an organiza-
tion reward firefighters or fire marshals? If
firefighters are rewarded, do not expect
the employees to buy into process
improvement that stresses getting the job
done right the first time.

The structure of an organization con-
sists of organizational charts (i.e., report-
ing), roles, and relationships. During the
first year of change, an organization gen-
erally focuses on strategy – values, goals,
and vision. Aligning an organization with
its strategy generally takes one to two
additional years. Leaders need to think
about where they want to be in 10 years.
They then need to determine the organi-
zational structure that is needed to achieve
their goals and vision.

The structure of the organization usu-
ally needs to be modified so that the right
people are doing the right jobs. Sometimes,
this is a matter of reassigning the right per-
son who has been in the wrong job. Other
times it is necessary to bring in new people,
either through promotion or from outside
the organization. This is the tough part of
changing the structure.

Using GE as an example of a company
that has undergone major cultural changes
over the years, it is interesting to observe
that GE has never brought in a new CEO
from the outside. Jack Welch was a lifelong
GE employee. His replacement, Jeff
Immelt, was promoted from within.

Change can occur from within an orga-
nization by having the right people in the
right positions. Jack Welch used LSS as a
tool to help him create cultural change. At
GE’s 1999 annual meeting, he said that cor-
porate strategies for the foreseeable future
were globalization, services, and Six Sigma.

Technology

Facilitation

Technology

Facilitation

CultureCulture

StrategyStrategy StructureStructure

Figure 1: The Strategic Thinking Trigraph

Alternate Mixes for CMMI

12 CROSSTALK The Journal of Defense Software Engineering April 2006

If Six Sigma or CMM IntegrationSM is
part of the strategy, how is this to be done
from an organizational perspective? Is it
part of a corporate quality group? Does
each division need to have a process czar?
Even when we know what needs to be
done, it is difficult to enact these changes
in industry, and much more difficult in
government. It frequently requires leaders
to act in the best interest of the person
who will come after them. For example,
VADM Phillip Balisle decided to imple-
ment LSS throughout the Naval Sea
Systems Command. Not long after Balisle
made this decision, VADM Paul Sullivan
replaced him. Sullivan has also committed
to LSS and is implementing it throughout
his organization.

First-Year Strategy
The strategy of the organization is gener-
ally defined in terms of its mission, core
values, vision, and goals. Organizational
leaders are generally pretty good at think-
ing in these terms; however, getting the
entire senior leadership team to have a
common understanding generally takes
about a year.

Holding a series of off-site meetings
with advance reading and homework is a
primary process for achieving this under-
standing. These off-site meetings need to
be reinforced through time dedicated to
strategic thinking at regular staff meetings.
The first off-site meeting should focus on
establishing a common understanding of
the organization’s mission and values. The
mission is usually understood in govern-
ment. Values are usually only implicitly
known. Each leader thinks that he or she
knows them, and in most good organiza-
tions there is considerable overlap in what
people think. However, this off-site meet-
ing is likely to reveal significant differ-
ences. These differences form the basis
for extensive discussion of the organiza-
tion’s true values.

A couple of good reading assignments
to be completed before the start of this off-
site meeting are chapters three through five
(on leadership and values) of Sullivan and
Harper [10] and Larkin and Larkin [11].

Other topics to be covered in this first
off-site meeting include the urgency for
change and a brutally honest discussion of
the organization’s strengths and weakness-
es. For example, discuss the reasons for
recent successes and failures. Perform a
strengths, weaknesses, opportunities, and
threats analysis.

Discuss the reading assignments. Have

everybody do an exercise to specify why
they agree or disagree with Gen. Sullivan’s
rule No. 2, “Leadership begins with val-
ues.” Include discussion of leadership
styles as part of this session. How do
these styles reflect the organization’s val-
ues? Other questions to ask include:
• How do these values speak to the

future of the organization?
• How does organizational and individ-

ual behavior reflect these values?
• What behaviors are contradictory to

these values?
Subsequent sessions can focus on

vision. A leader’s vision is a view of what
his or her organization and products (or
services, etc.) will look like in 10 years. It is
critical that the vision and core values be
in harmony. Each member of the senior
leadership team should write a story that

describes the vision in terms of his or her
business area or function. Telling stories is
a great way to learn [12].

Core values and vision act like fields –
electric, magnetic, gravitational, etc. They
are unseen, but are real forces reflected
throughout the organization. (See [13] for
further discussion of this and related con-
cepts.)

Consider the Tylenol scare of 1982
and Johnson & Johnson’s reaction. Seven
people died on Chicago’s west side when
they ingested extra-strength Tylenol cap-
sules laced with cyanide. Even though this
problem was not caused by Johnson &
Johnson, they instantly pulled the product
from the market and kept it off the mar-
ket until tamper-proof packaging (and
caplets) was developed. It cost the compa-
ny more than $100 million.

When asked how the company was
able to respond so quickly, the CEO of
Johnson & Johnson said that not doing so
would have violated its core values. He did
not need to call meetings; he just applied
their core values [14].

The CEO’s actions were highly visible
to both employees and the public. Every

employee in this global company knew what
happened. Within three months, Tylenol
regained 95 percent of its market share.

Communicate your values and vision
to everyone in your organization.

The senior leadership team also needs
to define goals, activities, and metrics.
Goals are long-term and when achieved,
an organization’s vision will be substantial-
ly realized. Activities are near-term tasks
such as plans for the next fiscal year and
are tied to the goals. Metrics measure
progress toward achieving the goals.

LSS is an example of an activity.
Depending on the goals, it could be aimed
toward making the organization world-
class, reducing costs to meet future budgets,
or providing value to customers. Whatever
its aim, justify it by measuring results.

Summary
This article focuses on the leadership
actions needed to implement process
improvement, which involves changing an
organization’s culture. That topic is gener-
ally not discussed when we espouse CMM,
LSS, or any other process improvement
method yet it is critical to successful
implementation. This attempted culture
change will cause the ultimate demise of
process improvement efforts unless it is
handled well.

For those reasons, leadership is the
focus of this article. It is pointed out that
change is hard. Successful change requires
committed leaders who communicate with
their employees and have action consistent
with what they say. Leaders need to do a lot
of strategic thinking. They need to recog-
nize that change occurs over time. Patience
is necessary. Leaders need to establish their
strategy during the first year and develop
an appropriate organizational structure
within three years. Then, through consis-
tency, paying attention to the data, and
communication, the culture will change.

This approach is encapsulated in the
title of Peter Schwartz’s book “The Art of
the Long View.”u

References
1. Shere, Kenneth. “Lean Six Sigma:

How Does It Affect the Govern-
ment?” CrossTalk Mar. 2003: 8-11
<www.stsc.hi l l .af.mil/crosstalk/
2003/03/shere.html>.

2. Shere, Kenneth. “Comparing Lean Six
Sigma to the Capability Maturity
Model.” CrossTalk Sept. 2003: 9-
12 <www.stsc.hill.af.mil/crosstalk/
2003/09/0309shere.html>.

3. Pritchett, Price. The Employee Hand-
book of New Work Habits for a
Radically Changing World. Pritchett

“Leaders must be
committed to the change

and be able to
communicate the

urgency for change to
everybody in their

organization.”

SM CMM Integration is a registered service mark of
Carnegie Mellon University.

Managing Cultural Changes in Your Organization

April 2006 www.stsc.hill.af.mil 13

Rummler-Brache, 1999.
4. National Security Association. Report

of the Commission to Assess United
States National Security Space
Management and Organization. Wash-
ington, D.C.: NSA, 11 Jan. 2001.

5. Shere, Kenneth D., and Scott R. Tur-
ner. “Vision and Cultural Change in
Government Satellite Programs.” Pro-
gram Manager. May-June 2003: 88-92.

6. Schwartz, Peter. The Art of the Long
View. Doubleday, 1991.

7. Sullivan, Gordon, and Michael Harper.
Hope Is Not a Method. New York:
Broadway Books, 1997.

8. O’Toole, James. Leading Change. San
Francisco, CA: Jossey-Bass Publishers,
1995.

9. Larkin, T.J., and Sandar Larkin.
“Reaching and Changing Front Line
Employees.” Harvard Business Review.
May 1996.

10. Sullivan.
11. Larkin: 95-104.
12. Kaye, Beverly, and Betsy Jacobson.

“True Tales and Tall Tales: The Pow-
er of Organizational Storytelling.”
Training and Development. Mar. 1999:
45-50.

13. Wheatley, Margaret. Leadership and
the New Science. Berrett-Koehler
Publishers, 1999.

14. Tichy, Noel M. The Leadership
Engine. New York: Harper Business,
1997: 116.

Note
1. The original source of this figure is

uncertain, but I was first shown it by
Sheila Sheinberg, a nationally known
consultant in organizational behavior.
Some of the ideas in this article come
from working with her.

About the Author

Kenneth D. Shere, Ph.D.,
is a senior engineering
specialist at The Aero-
space Corporation where
he provides systems and
software engineering, ac-

quisition, and strategic leadership sup-
port to various governmental organiza-
tions. He is certified as a Lean Six Sigma
green belt and a Software Engineering
Institute Software Capability Evaluator.
He has a Bachelor of Science in aero-
nautical and astronautical engineering, a
Master of Science in mathematics, and a
doctorate in applied mathematics, all
from the University of Illinois.

The Aerospace Corporation
1000 Wilson BLVD STE 2600
Arlington,VA 22209
Phone: (703) 608-0904
Fax: (703) 812-9415
E-mail: shere@aero.org

COMING EVENTS

May 1-4
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 1-5
PSQT 2006 West

Practical Software Quality and Testing
Las Vegas, NV

www.psqtconference.com/2006west

May 7-11
2006 North America Computer Audit,

Control and Security Conference
Orlando, FL

www.isaca.org

May 9-10
Fulfilling the Warfighter’s Vision 2006

Closing the Information Gap
St. Petersburg, FL

www.afei.org/brochure/6a06/
index.cfm

May 16-17
MEECC 2006

Military Embedded Electronics and
Computing Conference

Long Beach, CA
www.meecc.com

May 20-28
28th International Conference on

Software Engineering
Shanghai, China

www.isr.uci.edu/icse-06

June 19-22
CISC 2006 Combat Identification

Systems Conference
Orlando, FL

www.usasymposium.com/cisc

June 25-30
18th Annual Forum of Incident Response

and Security Teams Conference on
Computer Security and Incident Handling

Baltimore, MD
www.first.org/conference/2006

Software Assurance
September 2006

Submission Deadline: April 17

Star Wars to Star Trek:
How Science Fiction Affects

Real World Technology
October 2006

Submission Deadline: May 22

Back to Basics/
Management Basics

November 2006
Submission Deadline: June 19

Ple ssTalk, available on the
Internet a ccept article submissions on all
software-related topics at any time, along with Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for

ted topics to supplement upcoming theme issues.
hedule for three areas of emphasis we are looking for:

14 CROSSTALK The Journal of Defense Software Engineering April 2006

Traditionally, solicitations for Depart-
ment of Defense (DoD) projects

have included some method of risk evalu-
ation to determine the level of risk that
the project manager (PM) will face in
selecting a bidder to provide the prod-
ucts/services for his or her program. This
risk evaluation could take the form of a
Software Capability Evaluation (SCESM), a
methodology developed by the Software
Engineering Institute (SEISM) at Carnegie
Mellon University, or other methods.

The Communications-Electronics Life
Cycle Management Command (C-E
LCMC) Software Engineering Center
(SEC) developed a streamlined form of
the evaluation called the Software Process
Risk Evaluation (SPRE) that has been
mandated for all major C-E LCMC acqui-
sitions. This method, like the SCE, has
been used during the solicitation process
to evaluate all potential vendors and pro-
vide input to the evaluation factors for the
solicitation.

There were several problems with the
SCE and SPRE methods. There often was
not enough time to prepare for the evalu-
ation. A lack of historical information
about the bidders’ processes made the
evaluations more critical while decreasing
the effectiveness of a short, intense on-
site visit. The cost of the evaluations were
high for both the government, who has to
visit all of the bidders during the propos-
al evaluation period, and the contractor,
who has to apply significant resources to
prepare data and provide people to be
interviewed during the on-site visit. Both
parties potentially spend money to sup-
port multiple source selection evaluations.
The government expends resources to

evaluate the losing contractors, and the
contractor could possibly have to support
multiple evaluations in a given timeframe.

Acquisition Reform
Industry has matured over the years. The
SEI issued the Capability Maturity
Model® for Software (SW-CMM®) in
1993. Since that time, many of the orga-
nizations that bid on acquisition solicita-
tions have undergone process improve-
ment initiatives using SW-CMM or its
successors, including the CMM Inte-
grationSM (CMMI®). With the advent of
the CMMI, a new appraisal method – the
Standard CMMI Appraisal Method for
Process Improvement (SCAMPISM) [1] –
has been developed and is quickly becom-
ing the appraisal method of choice,
regardless of which CMM is being used
as the model for process improvement.
SCAMPI can be used in lieu of the
SCE/SPRE for evaluating bidders during
a source selection.

Government acquisition reform has
evolved as well. The Interim Defense
Acquisition Guidebook, paragraph
C5.2.3.5.6.1.5, states the following:

Select contractors with domain
experience in developing compara-
ble software systems; with success-
ful past performance; and with a
mature software development capa-
bility and process. Contractors per-
forming software development or
upgrade(s) for use in an [Acqui-
sition Category] ACAT I or ACAT
IA program shall undergo an evalu-
ation, using either the tools devel-
oped by the [SEI] or those
approved by both the DoD
Components and the Deputy
Director, Software Intensive Sys-

tems. At a minimum, full compli-
ance with SEI Capability Maturity
Model Level 3, or its equivalent in
an approved evaluation tool, is the
department’s goal. However, if the
prospective contractor does not
meet full compliance, risk mitiga-
tion planning shall describe, in
detail, the schedule and actions that
will be taken to remove deficiencies
uncovered in the evaluation process.
Risk mitigation planning shall
require Product Manager approval.
The Deputy Director, Software
Intensive Systems shall define Level
3 equivalence for approved evalua-
tion tools. The evaluation shall
examine the business unit proposed
to perform the work. The reuse of
existing evaluation results per-
formed within a 2-year period prior
to the date of the government solic-
itation is encouraged. [2]

Later guidance clarified Level 3 equiv-
alence. The Software Development
Capability Evaluation [3], developed by
the U.S. Air Force with approved core set
revisions, was determined to be an accept-
able alternative set of criteria to the SW-
CMM. The use of CMMI Systems
Engineering and Software Engineering
Vers. 1.1 Level 3 criteria is another accept-
able alternative to the use of SW-CMM
Level 3 criteria.

Newer guidance from the Office of
the Secretary of Defense/Acquisition,
Technology, and Logistics no longer
requires Level 3 equivalent ratings.
Process improvement is encouraged, but
maturity levels are no longer stated in the
guidance. The rationale is that many
organizations have reached maturity
Level 3 or better, and that the original

Cooperative Appraisals for Capability and Risk Evaluation

The U.S. Army Communications-Electronics Life Cycle Management Command Software Engineering Center is working
with the Software Engineering Institute in creating a framework for cooperative government/industry appraisals for process
improvement and risk evaluation. Traditionally, solicitations for Department of Defense projects have included some sort of
risk evaluation. Though risk evaluations are only one component of a source selection, all bidders underwent the risk evalu-
ation site visit, costing the government significant time and effort in evaluating potentially several organizations that would not
perform the work solicited. The concept developed is to partially base an award on the merits of a process proposal with the
understanding that an on-site evaluation would follow after contract award. Another aspect of these appraisals is that repre-
sentatives from the government and the organization being appraised work together on the appraisal team to jointly evaluate
the organization. This article describes the efforts of the authors in performing post-award cooperative appraisals, the lessons
learned, and the benefits to both the government and the appraised organization.

Michael D. Barnett
MTC Technologies

Diane A. Glaser
U.S. Army

SM CMM Integration, SCE, SCAMPI, and SEI are service
marks of Carnegie Mellon University.

Cooperative Appraisals for Capability and Risk Evaluation

April 2006 www.stsc.hill.af.mil 15

direction was not to have organizations
go for the rating, but to initiate organiza-
tional process improvement.

The CMMI, in its continuous represen-
tation, allows an organization to be
appraised to determine a process capabili-
ty profile; the organization can look at
Process Areas (PAs) of interest based on
organizational goals and see how well they
have implemented them. This can also
allow a PM to focus on areas that are of
high risk for a particular acquisition, rather
than look at overall maturity across all PAs.

Appraisal Reuse
To reduce costs and resources associated
with evaluating development capabilities,
the DoD is working with industry to pro-
vide implementing mechanisms that better
support the reuse of appraisals. Results of
previous appraisals conducted on the orga-
nizational unit proposing to do the work
may be an acceptable alternative to the
government performing a new appraisal.
The reused appraisals must be shown to be
independent, i.e., at a minimum, the lead
appraiser should not be from within the
organization being appraised.

C-E LCMC Acquisition Strategy
The SEC has been involved in the exami-
nation of cooperative government/indus-
try appraisals as an alternative to the con-
ventional acquisition strategy for several
years [4]. The SEC took the initiative in
working with the acquisition center at
Fort Monmouth to identify software-
intensive acquisitions occurring there.
The interim project office was contacted
and cost-effective strategies developed to
address the acquisition agent’s need to
reduce risk. One of these strategies was to
wait until after contract award and per-
form a post-award appraisal of the suc-
cessful bidder.

To make the post-award appraisal
viable, the solicitation package must have
the appropriate language. The contract
should require that the product be devel-
oped using CMM/CMMI Level 3
processes. Proof is to be submitted,
demonstrating that the contractor is rated
as a Level 3 organization (e.g., copies of
CMM/CMMI appraisals and process
improvement track record). If the organi-
zation cannot verify Level 3, a detailed
process improvement plan, including a
schedule that leads to a Level 3 appraisal
is submitted. This provides the acquisi-
tion agent with material in which to eval-
uate the bidders’ process maturity during
the source selection without the effort
required for on-site visits.

The post-award appraisal must also be

contained in the contract. Typically, C-E
LCMC requires that the contractor is
responsible for leading and conducting an
appraisal with government participation
on the appraisal team. This is appropriate
as it is the contractor’s plant and process-
es. The contractor is required to submit an
appraisal plan or process proposal as a
formal deliverable after the contract is
awarded.

If a CMMI SCAMPI appraisal is
selected or required, additional options
present themselves. The SCAMPI frame-
work defines three classes of appraisal. A
Class C appraisal is a very cursory look at
the processes of the organization. It can
often be nothing more than a review of
process documentation and its application
to the project. A Class B appraisal is more

robust, but does not emphasize the depth
of coverage and rigor that result in a
maturity level rating for the organization.
Class A appraisals are performed by SEI-
authorized SCAMPI lead appraisers. They
can lead to a formal maturity rating or
capability profile that is submitted to the
SEI. The government determines which
class SCAMPI appraisal is appropriate for
the acquisition.

With the SEI developing formal mech-
anisms for SCAMPI B and C appraisals,
this methodology is fitting into a DoD
approach suggested by Mark Schaeffer,
the DoD sponsor for CMMI, and
Director, Systems Engineering for the

Office of the Secretary of Defense. This
approach, reported by Mike Phillips in
“CMMI: A Progress Report” [5], would
have acquirers look for strengths or weak-
nesses in the development processes that
constitute risks to the proposed develop-
ment effort. Satisfying CMMI goals,
process areas, or maturity or capability lev-
els would not be the point; it is primarily a
risk identification and mitigation
approach.

Schaeffer suggests a three-phased
approach. In phase 1, bidders would be
appraised for PAs that the Government
Program Office considers highest risk.
After contract award, in phase 2, the win-
ning team undergoes a baseline appraisal,
using a risk-based analysis of the process
strengths and weaknesses, thereby estab-
lishing action plans for future checks. In a
risk-based appraisal framework, the
CMMI is used to identify and group weak-
nesses to address systemic problems. The
CMMI’s process categories – Project
Management, Engineering, Support, and
Process Management – may be used to
define areas that the PM believes most
affects the developer team’s contract per-
formance. Using these categories effec-
tively covers both product and process
risk. In phase 3, the risks are monitored to
closure.

Tying CMMI/risk mitigation to an
award fee on a contract vehicle can be a
good incentive for the contractor. A pro-
gram office should consider wording the
contract to have a continuous process
monitoring function. For example, a PM
could elect to utilize the Defense Contract
Management Agency (DCMA) or some
other matrix organization to perform
process monitoring. This is also a recom-
mendation made in the Workshop on
CMMI Use in Acquisition [6].

Benefits of Post-Award
Appraisals
The PM saves resources by limiting the
number of appraisals required for a solic-
itation. Maturity risk is only one of many
evaluation factors for an acquisition
source selection evaluation. The increased
risk of not performing an on-site evalua-
tion for each bid is mitigated by the cost
and time savings. Many organizations have
been performing process improvement
initiatives for more than 10 years. This
legacy of process improvement tends to
ensure that processes are defined, which is
the focus of maturity Level 3 in the
CMM/CMMI.

The bidders benefit in this approach as
well. Organizations can reuse their

“The CMMI, in
its continuous

representation, allows
an organization to be

appraised to
determine a process
capability profile; the

organization can look at
Process Areas (PAs) of

interest based on
organizational goals and
see how well they have
implemented them.”

Alternate Mixes for CMMI

16 CROSSTALK The Journal of Defense Software Engineering April 2006

process data for multiple solicitations.
They do not have the expense of prepar-
ing for an on-site visit for a solicitation
that they are not guaranteed to win.
Cooperative appraisals reward the organi-
zation for its process improvement
efforts, thereby encouraging internal
process improvement activities. Table 1
summarizes the attributes and how con-
ventional evaluations compare/contrast to
the cooperative appraisal methodology.

Pilot Effort for Cooperative
Appraisals
The SEC was able to participate in an
ACAT I acquisition where the PM was
consulted before the release of the
Statement of Work (SOW). After being
briefed on the benefits of performing a
post-award appraisal, the PM agreed to
have language added to the SOW for a
CMMI self-assessment of all major con-
tributors to the product development
effort using the SCAMPI method with up
to four government participants.

The winning contractor team submit-
ted an assessment plan to have four team-
mates undergo a self-assessment. The
original plan called out in the SOW was to
submit the plan within 60 days after con-
tract award and perform the self-assess-
ments within 120 days after contract
award. The assessment would establish a
process capability baseline on the organi-
zational unit doing the work on the pro-
gram as well as determine risk areas to be

monitored over the acquisition life cycle.
Since the contract was awarded to a team
of contractors, consideration was given to
the timing requirements for both the plan
and the conduct of the self-assessments.
The SOW provided a list of CMMI PAs of
interest. These were the minimum set of
processes that were to be assessed, which
tied into the program office’s key perfor-
mance parameters, goals, and objectives
for the program.

Using multi-organizational teams
brings a new risk to the conventional
acquisition evaluation methodology. The
contracting team may have individually
performed process improvement efforts,
but the team does not necessarily share
institutionalized processes. Former assess-
ments are not directly applicable to the
newly formed team and are less predictive
of the maturity or capability of the team
doing the work.

In this pilot, the prime contractor
worked to develop capstone processes
that all teammates would follow, but addi-
tionally allowed for the individual organi-
zation’s processes to be used. For exam-
ple, a project Software Development Plan
(SDP) was written by the prime, which
called out use of the other organizations’
SDPs for their software contributions to
the project.

The contractor’s self-assessment plan
called for self-assessments to be held at
multiple organizations. Each self-assess-
ment covered all maturity Level 2 and 3

PAs. Some sites added higher maturity
PAs. The government worked with the
contractor team to try to leverage each
organization’s internal process improve-
ment activities. All of the contractors were
transitioning from SW-CMM to CMMI;
they were already implementing organiza-
tional process improvement plans.

Where feasible, the government
allowed the organization to add the acqui-
sition project to the list of internal pro-
jects being appraised to avoid unneces-
sary effort of preparing for an indepen-
dent assessment of one program. For at
least one organization, this meant sched-
uling the appraisal as part of their exter-
nally led SCAMPI. This benefited the
government as well, since the project was
not yet fully under way and, therefore,
many PAs (e.g., technical solution, verifi-
cation, and validation) could not be rigor-
ously assessed – the project simply was
not to that point in its life cycle. The addi-
tion of projects in different stages of
maturity provided a more rounded picture
of the organization and how its institu-
tionalized processes would be applied to a
future project.

The SEC provided the two authors as
the core team that participated on the self-
assessments. Using available local DCMA
representatives augmented government
participation. The PM had contracted
with DCMA to perform process monitor-
ing over the course of the development
effort, so their participation in the self-
assessments acted as a kick-start in under-
standing the details of the project’s
processes.

Cooperative Appraisals and
the CMMI
The way that acquisition reform is evolv-
ing is similar to that of the evolution from
SW-CMM to CMMI. CMMI provides
integration of software with other disci-
plines, i.e., systems engineering and inte-
grated product and process development
(IPPD), manifested in integrated product
teams (IPTs).

There is an analogous evolution in
acquisition – a paradigm shift from the
traditional buyer-seller relationship to that
of an IPT where both the government
and contractor share responsibility for the
end product. This integrated team con-
cept necessitates a team approach to
assessment as well. In a cooperative
appraisal, the government participants add
objectivity and diverse experience. The
team that is formed during cooperative
appraisals can be extended to established
IPTs for the acquisition life cycle, where

Table 1: Evaluation and Cooperative Appraisal Attributes

Table 1:
Evaluatio
n and
Cooperati
ve
Appraisal
Attributes

Attribute SCE/SPRE/SCAMPI Cooperative Appraisal

Timeframe § Pre-award.

§ May be used post-award for
contract monitoring.

§ Pre-award or post-award.

§ Recommend post-award
baseline and follow-on for
contract monitoring.

§ Can be linked to supplier's
process improvement appraisal

schedule.

Cost § High (both supplier and
acquirer).

§ Lower (cost sharing).

Cost Effectiveness § Low, especially if supplier must
support evaluations for losing
solicitation.

§ High.

§ Eliminates cost of evaluating
losing bidders.

Resources Needed § Resource-intensive. § Resource sharing for staffing
appraisals.

§ Supplier can reuse process
data.

Incentive for Process

Improvement

§ Little if no contractual language
for process improvement.

§ Supplier can reuse process
assets developed for process
improvement.

§ Potential for appraisal reuse on
subsequent solicitations.

Integrated Product

Development

§ Government-only team does not
form integrated teams with

supplier.

§ Fosters early development of
integrated teams.

§ Facilitates government/supplier
communication.

Risk § Mitigates selection of high-risk

bidders.

§ Does not allow for an in depth
risk evaluation of the supplier
unless applied post-award.

§ Early risk mitigation if performed

early in contract execution.

§ Continuous risk monitoring and
control if used for contract
monitoring.

Cooperative Appraisals for Capability and Risk Evaluation

April 2006 www.stsc.hill.af.mil 17

government participants in the assessment
can also be members of the government’s
project management team.

Anyone who has participated in an
SEI appraisal can attest to the fact that
the intensity of the shared experience
does much to foster team building. A
foundation of mutual respect, equality,
and cooperation is established through-
out an appraisal. These sentiments can be
brought back to the project management
office and used to continuously facilitate
communication between the government
and contractor. The cooperative
appraisal process allows both parties to
utilize and benefit from the appraisal
data; there is open process communica-
tion between the government and their
contractor. This gives the government an
understanding of the way the contractor
does business.

The government gets to meet the key
players, from the president of the corpo-
ration to the practitioners at the develop-
er’s site, and may additionally see the facil-
ities and operations for the project. This
interaction establishes positive working
relationships and provides a greater
understanding of what the government/
contractor IPT brings to the program.

In a cooperative appraisal, the govern-
ment leverages the project and process
expertise brought by the contractor, thus
facilitating the government’s assessment
efforts. Usually there are appraisal team
members that are part of the contractor’s
process improvement group or belong to
the team working on one of the projects
being appraised. These people can quickly
guide the government appraisal team mem-
ber to the appropriate process artifacts or
answer appraisal-focused questions.

Lessons Learned
There was some trepidation on the part of
the contractors in performing the cooper-
ative appraisal. It was initially perceived
that the government representatives were
coming in to perform an audit or evalua-
tion, not to participate in an internal
process appraisal. Discussions with the
site coordinator and contractor manage-
ment before the appraisal helped over-
come these perceptions.

The government representatives
explained that the cooperative appraisals
were one more manifestation of the IPT
method of running a program where the
government and the contractor share
responsibility for the program’s success.
The contractors were reminded that their
organization’s formal appraisal teams are
often composed of personnel external to
the organization, and that the government

representatives’ goal was to be integral
members of the team. The measure of
success would be how forthcoming those
interviewed were during the self-assess-
ment. Since many of the people inter-
viewed had experience with internal
appraisals, where they may speak with
people outside of their business unit or
external people, the cooperative appraisal
team did not experience any difficulties in
this area.

Internal process improvement
requires senior management commitment.
The cooperative appraisal teams usually
are comprised of several process group
members. These process group personnel
are responsible for recommending the
future direction of process improvement
efforts in the organization. The organiza-
tions being appraised were transitioning
from CMM to CMMI; some had never
piloted a CMMI appraisal. This provided
an opportunity for the process group to

gather valuable information on the state
of the organization and how successfully
the transition efforts were proceeding.
The external inputs from the government
can assist the process group by providing
an unbiased view of the organization, and
help influence senior management in
determining what areas the organization
should be concentrating on in their future
process improvement initiatives.

The government gained insight into
the different cultures of the organizations
comprising the contractor team. They had
different ways of doing business, different
vocabularies, and different ways of work-
ing with the prime contractor and the
government. Understanding these differ-
ences aids in facilitating communications
among the members of the IPTs and

avoids misinterpretations.
Having a core team of government

participants on all of the appraisals pro-
vided continuity. The same personnel can
compare and contrast how the different
organizations are performing process
improvement and satisfying the practices
of the CMMI. Common areas of weak-
ness and interpretation issues can be
raised and addressed to better support the
program.

If the government provides several
people for a cooperative appraisal, they
should represent the major disciplines
(e.g., program management, systems engi-
neering, software engineering, and logis-
tics) that are involved in the acquisition. A
multi-disciplinary team can cover a broad-
er range of PAs, while a given government
team member can specialize in his or her
area of expertise. Involving multiple disci-
plines allows the government to examine
the developers’ processes, taking into con-
sideration the entire program life cycle.
This enables downstream risks to be iden-
tified early in the acquisition. These risks
can be mitigated with less effort as a result
of the early collaboration and expertise
among the government appraisal team
and the developers’ project teams.

PMs considering using cooperative
appraisals should enlist direct or matrix
support from the PM office for participa-
tion on the appraisal team. The detailed
view of the organization is extremely
valuable to a person who is supporting the
PM in managing the acquisition. The
appraisal team member gets to meet and
speak with many of the people perform-
ing the project work, interview senior
management, and understand their com-
mitment to the project.

As participants of several appraisals,
the authors can state that an extremely
beneficial byproduct of being on an
appraisal team is that you can learn of
many practices that can be adapted for use
in your organization. No organization has
a monopoly on best practices. The more
exposure that you have to the industry, the
more you can recognize there are superior
ways of doing things.

Aftermath
The joint appraisals were considered to
be a success by both the government and
industry. Two of the teammates who had
been appraised invited the government
representatives back for a follow-on
appraisal where the company was trying
to achieve a higher maturity level. These
organizations valued the government’s
contributions to the appraisal effort, and
wished to maintain the same experienced

“... the authors can
state that an extremely

beneficial byproduct
of being on an

appraisal team is
that you can learn
of many practices

that can be adapted
for use in

your organization.”

Alternate Mixes for CMMI

18 CROSSTALK The Journal of Defense Software Engineering April 2006

appraisal team in this follow-on appraisal.
The government, in turn, appreciated the
opportunity to follow up on re-appraising
the organizations. This allowed the gov-
ernment the ability to witness the effect of
the process improvements made in the
organizations since the self-assessment.u

References
1. Members of the Assessment Method

Integrated Team. Standard CMMI
Appraisal Method for Process Im-
provement, Vers. 1.1: Method Defini-
tion Document. Pittsburgh, PA:
Software Engineering Institute, Dec.
2001 <www.sei.cmu.edu/publications/
documents/01.reports/01hb001.
html>.

2. Office of the Secretary of Defense.
Interim Defense Acquisition Guide-
book. Washington, D.C.: Department
of Defense, 30 Oct. 2002 <http://
dod5000.dau.mil/DoD5000Inter
active/InterimGuidebook.asp>.

3. Air Force Materiel Command. “Soft-
ware Development Capability Eval-

uation.” AFMC Pamphlet 63-103.
Washington, D.C.: Department of the
Air Force, 15 June 1994 <http://
afmc.wpafb.af.mil/pdl/afmc/63
afmc.htm>.

4. Members of the Assessment Method
Integrated Team. Standard CMMI
Appraisal Method for Process Im-
provement, Vers. 1.1: Method Imple-
mentation Guidance for Government
Source Selection and Contract Process
Monitoring. Pittsburgh, PA: Software
Engineering Institute, Sept. 2002
<www.sei.cmu.edu/pub/documents/
02.reports/pdf/02hb002.pdf>.

5. Phillips, Mike. “CMMI: A Progress
Report.” news@sei. Apr. 2005 <www.
sei.cmu.edu/news-at-sei>.

6. National Defense Industrial Associa-
tion. Guidebook and Training Break-
out Group Workshop on CMMI Use
in Acquisition. Proc. of CMMI Use in
DoD Programs Workshop and
Summit, Alexandria, VA., Sept. 7-8,
2005 <http://proceedings.ndia.org/
587J/Gb_workshop.pdf>.

About the Authors

Michael D. Barnett is
the Capability Maturity
Model® Integration coor-
dinator at MTC Tech-
nologies, provider of a
wide range of sophisti-

cated system engineering, intelligence,
information technology, and program
management solutions, primarily to the
Department of Defense and various
intelligence agencies. He has more than
25 years experience in developing and
monitoring software-intensive systems,
and has participated in several appraisals,
both internal and external. He has
Bachelor of Arts degrees in physics and
astronomy from the University of
Virginia and a Master of Science in com-
puter science from Stevens Institute of
Technology.

MTC Technologies
Information Dominance Division
25 James WAY
Eatontown, NJ 07724
Phone: (732) 440-1139
Fax: (732) 389-8708
E-mail: michael.barnett@

mtctechnologies.com

Diane A. Glaser is a
computer scientist for the
U.S. Army Communica-
tions-Electronics Life Cycle
Management Command
Software Engineering

Center (SEC) at Fort Monmouth, N.J. As
a systems analyst, she performed software
design, development, and integration for
communications systems. Glaser has par-
ticipated in several appraisals for the gov-
ernment using the Standard Capability
Maturity Model® Integration (CMMI®)
Appraisal Method for Process Improve-
ment, and has served on both govern-
ment-only and cooperative government/
industry teams. She belongs to the SEC
CMMI Process Group and the SEC
Software Engineering Process Group for
the Battlespace Systems Support Direc-
torate. Glaser has a Bachelor of Science
in computer science from Montclair State
University, New Jersey.

U.S. Army C-E LCMC
Software Engineering Center
BLDG 1210 RM 328
Fort Monmouth, NJ 07703
Phone: (732) 532-3287
DSN: 992-3287
E-mail: diane.glaser@us.army.mil

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG.MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEWTWISTONTECHNOLOGY

MAR2006 c PSP/TSP

To Request Back Issues on Topics Not
Listed Above,Please Contact <stsc.
customerservice@hill.af.mil>.

Software Engineering Technology

April 2006 www.stsc.hill.af.mil 19

Software development tools are com-
puter programs that help developers

create other programs. Such tools have
been in use since the early days of com-
puting to improve the efficiency of the
development process by automating mun-
dane translation operations and bringing
the level of abstraction closer to the appli-
cation engineer. Nowadays, development
tools are used in a variety of safety-critical
applications, including the aviation, auto-
motive, space, nuclear, railroad, medical,
and military industries, and contribute to
the risks associated with using respective
products. Despite these risks to society,
development tools are rarely qualified in a
sense comparable to product certification
in regulated industries. The objective of
this article is to look at the current state of
the tool qualification process, identify the
issues, and propose recommendations for
potential improvement, focusing on the
aviation industry.

System Certification Versus
Software Tool Qualification
Certification of airborne equipment is typ-
ically achieved through the Federal
Aviation Administration (FAA) authoriza-
tion of a type certificate (the entire air-
craft), supplemental type certificate (new
equipment in a specific aircraft), or a tech-
nical standard order (minimum perfor-
mance standard for materials, parts, and
appliances used on civil aircraft). A special
committee (SC-145) of the Radio Tech-
nical Commission for Aeronautics (RTCA)
convened in 1980 to establish guidelines
for developing airborne systems. The
report “Software Considerations in Air-
borne Systems and Equipment Certifica-
tion” was published in January 1982 as the
RTCA Document Order (DO)-178 (and
revised as DO-178A in 1985).

Due to rapid advances in technology,
the RTCA established a new committee

(SC-167) in 1989 with the objective of
updating the DO-178A by focusing on
five areas: documentation integration and
production, system issues, software devel-
opment, software verification, and soft-
ware configuration management and soft-
ware quality assurance. The resulting doc-
ument, DO-178B, provides guidelines for
applicants developing software-intensive
airborne systems [1, 2]. It discusses objec-
tives that need to be met to show that the
software development process provides
specified levels of safety assurance. It also
describes the processes and means of
compliance.

Systems are categorized by DO-178B
as meeting safety assurance levels A
through E based on their criticality in sup-
porting safe aircraft flight. The level A sys-
tem is the most critical: The failure of
such a system could result in a catastroph-
ic failure condition for the aircraft. The
level E system is the least critical: Such a
system has no effect on the operational
capability of the aircraft or pilot workload.
Although the RTCA DO-178B is the lead-
ing source of guidelines for software
developers engaged in such system con-
struction, two other documents have criti-
cal bearing on the subject. RTCA DO-
248B [3] clarifies some of the misinterpre-
tation of the DO-178B. The FAA Order
8110.49 compiles a variety of guidelines
related to the use of software in airborne
systems. Chapter 9 is specifically dedicated
to tool qualification [4].

A key component of the updated ver-
sion of DO-178B is the concept of tool
qualification elaborated in Section 12.
Qualification is a supplementary process
that the applicant may elect to follow in
the course of certifying an airborne sys-
tem. According to the definition given in
DO-178B, tool qualification is defined as,
“The process necessary to obtain certifica-
tion credit for a software tool within the

context of a specific airborne system.” It is
the certification authority that decides on
the outcome of the qualification process.
Moreover, qualification, if claimed, is a
requirement in getting a system certified.

Types of Software
Development Tools
DO-178B differentiates between verifica-
tion tools that cannot introduce errors but may
fail to detect them and development tools
whose output is part of airborne software and
thus can introduce errors. There is a signifi-
cant amount of effort involved to qualify
a verification tool, and much more to
qualify a development tool. However,
numerous development tools have been
used successfully in many certified pro-
jects without being qualified. To define a
subject matter more narrowly, we need to
take a closer look at the entire domain of
software development tools.

The landscape of modern software
development tools is very broad, as illus-
trated in Figure 1 (see page 20). Following
the traditional model of the development
process from requirements to implemen-
tation, we can identify the following:
• The requirements category that includes

tools used early in the life cycle to
identify and specify the software
requirements.

• The design category that includes tools
allowing developers to create architec-
tural and detailed design of the soft-
ware in a notation of their choice sup-
ported by the tool; often in this cate-
gory, tools translate the model to
source code.

• The implementation category that
includes all support required to trans-
late the computer code and transfer it
to the target computer.
As illustrated in Figure 1, three other

categories of tools can be identified: those
related to analysis, testing, and target.

The Qualification of Software Development
Tools From the DO-178B Certification Perspective

Software development tools are in wide use among safety-critical system developers. Examples of such use include aviation, auto-
motive, space, nuclear, railroad, medical, and military applications. However, verification of tool output to ensure safety, man-
dated in highly regulated industries, requires enormous effort. If a tool is qualified, this effort can be reduced or even eliminat-
ed. The Radio Technical Commission for Aeronautics Document Order-178B and related documents provide guidelines by which
to qualify these tools. However, current regulations, business models, and industry practice make this goal difficult to accomplish.
This article discusses the qualification of development tools and the potential impact of this process on the aviation industry.

Dr. Janusz Zalewski
Florida Gulf Coast University

Dr. Andrew J. Kornecki
Embry Riddle Aeronautical University

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering April 2006

However, for this article, we will focus pri-
marily on the tools used in the design
phase, the central component of the soft-
ware development life cycle. They reflect
two diverse viewpoints on real-time, safety-
critical systems development, which result
from different developers’ backgrounds:
• Control engineers consider a system to

be a dynamic model consisting of well-
defined blocks of specific functionality
(logic, arithmetic, dynamic). The func-
tional paradigm of the model is the
basis for system simulation and analysis
of its behavior. Subsequently, the model
can be translated automatically into an
equivalent code, typically without any
additional developer’s involvement.

• Software engineers, on the other hand,
are familiar with the concepts of oper-
ating systems, programming languages,
software development methodologies,
and notations. The graphic notations
(classes, packages, states, transitions,
events) allow developers to represent
the structure and behavior of the target
system software as a set of components
that can be translated into programming
constructs (data structures, objects,
functions, etc.) using the automatic code
generation functionality of the tool.
Consequently, the software design

tools, which assist developers in translat-
ing the software requirements into source
code, can be categorized into two groups:
(a) a function-based, block-oriented approach
applied by control and system engineers,
and (b) a structure-based, object-oriented
approach applied by computer scientists
and software engineers.

The Qualification Process
A typical use for a design tool (software

producer) is to transform an input artifact
into output, thus creating another software
artifact. The current process mandates ver-
ification after each transformation. If this
transformation has an impact on the final
airborne product, the producer needs to be
qualified, but only if the transformation
output would not be verified and the trans-
formation leads to elimination, reduction,
or automation of any of the DO-178B
processes. The conditions under which a
development tool requires qualification are
presented in Figure 2 [4].

Software development tool qualifica-
tion is attempted only as an integral com-
ponent of a specific application program
requiring the FAA’s certification. The soft-
ware tools to be used are referenced with-
in the Plan for Software Aspects of
Certification (PSAC) and the Software
Accomplishment Summary documents of
the original certification project. If devel-
opment tool qualification is required, the
applicant should present for review the
Tool Operational Requirements (TOR) – a
document describing tool functionality,
environment, installation, operation man-
ual, development process, and expected
responses (also in abnormal conditions).

Two documents must be submitted and
approved: a Tool Qualification Plan, and a
Tool Accomplishment Summary as de-
scribed in [4]. To make an argument for
qualification, the applicant must demon-
strate correctness, consistency, and com-
pleteness of the TOR and show that the
tool complies with its TOR. This demon-
stration may involve a trial period during
which a verification of the tool output is
performed and tool-related problems are
analyzed, recorded, and corrected.

Other data required for review include

a Tool Configuration Management Index,
Tool Development Data, Tool Verification
Records, Tool Quality Assurance Records,
Tool Configuration Management Records,
etc. These requirements are also described
in [4]. Tool qualification data are approved
only in the context of the overall software
development for the specific system
where the intention to use the tool is stat-
ed in the PSAC. The tool itself does not
receive a separate qualification stamp of
approval. Therefore, using the tool on
another system/project requires a separate
qualification, although some qualification
credits may be reused.

Surveys requesting which tools are used
by industry were conducted at two national
conferences: the 2002 FAA National
Software Conference and the 2004 Embry
Riddle Aeronautical University/FAA Soft-
ware Tool Forum. In addition, two follow-
up e-mail solicitations were sent to more
than 500 professionals working on air-
borne systems. These surveys and solicita-
tions resulted in a relatively small sample of
responses that did not provide a base for
statistically significant results. The com-
ments included industry discouragement
regarding the rigor of development tool
qualification, and a justified perception of
the extensive cost of qualification.

Potential solutions to assist in commer-
cial off-the-shelf (COTS) development
tool qualification included extensive ven-
dor collaboration and using alternate means
allowed in DO-178B. The limited feedback
shows that there has been interest in qual-
ifying software development tools classi-
fied in the function-based/block-oriented
category, which cannot be said about
structure-based/object-oriented tools.

A short list of qualified development
tools includes code generators (Gener-
ation Automatique de Logiciel Avionique,
Graphical Processing Utility, Virtual
Application Prototyping System Code
Generator, Safety Critical Avionic
Development Environment Qualifiable
Code Generator) and configuration-
scheduling table generators (Universal
Table Builder Tool, Configuration Table
Generation Tool), most of them being in-
house products. According to several
informal exchanges with industry, many of
the modern COTS software development
suites actually have been used in the cre-
ation of software artifacts on certified
projects without going through the quali-
fication process.

Problems With Development
Tool Qualification
It is clear that qualification of develop-

Requirements

Tool

Structural

Design

Tool

Functional

Design

Tool

Typically With

Code Generator

Functionality

Implementation

Tool

Testing

Tool

Target

(with RTOS)

or/and

Tool Categories

Analysis

Tool

e.g.:

VxWorks

QNX

OSE

Integrity

LynxOS

e.g.:

CodeTest

TestRT

VectorCast

Insure++

Integrated

Development

Environment

(IDE)

e.g.:

Tornado

Multi

e.g.:

Rhapsody

RoseRT

STOOD

Artisan

e.g.:

SCADE

Matlab

BEACON

Sildex

e.g.:

RapidRMA

TimeWiz

e.g.:

Reqtify

DOORS

SpecTRM

DOME

Figure 1:Software Tool Categories

Can

tool insert error

into airborne

software?

Will

the tool’s output

NOT be verified

(as specified in

DO-178B)?

Are

processes of

DO-178B eliminated,
reduced, or automated

by use of

tool?

TOOL MUST

BE QUALIFIED

NO

QUALIFICATION

NECESSARY

NO

NO

NO

YES

YES

YES

Figure 2:Conditions When a Software Development Tool Requires Qualification

Figure 1: Software Tool Categories

The Qualification of Software Development Tools From the DO-178B Certification Perspective

April 2006 www.stsc.hill.af.mil 21

ment tools is an option rarely exercised in
the airborne software industry. In fact,
one could argue that qualification of
development tools is not a viable option.
Current interpretation of applicable
guidelines makes development tool quali-
fication a proposition that is not practical
from a managerial viewpoint, and not easy
from a technical viewpoint.

Managerial Viewpoint
The first group of problems is of a regu-
latory and managerial nature. The major
hurdle is the current state of regulations
and guidelines. The secondary obstacle is
the business model and lack of incentives,
in particular the prohibitive cost of tool
qualification. The existing tools, often
used in certification projects, do not have
appropriate data to support arguments
about meeting the objectives of DO-
178B. The applicant team’s intent is to cer-
tify the product rather than expand effort
and qualify the tool. The tool vendor does
not see the business advantage of qualify-
ing a tool while disclosing proprietary
information to potential competitors.

Development tool qualification
requires close collaboration between the
tool vendor and the applicant. This is the
reason why in-house tools are more likely
to be qualified. Internal trade studies [5]
have shown that the cost of development
tool qualification is significantly higher
than the cost of verification tool qualifica-
tion. The use of qualified verification
tools can result in fast savings on the first
program where they are introduced. In
contrast, the use of qualified development
tools may require several programs to
make up the cost.

The intellectual property rights may
need to be waived by the vendor to achieve
qualification. The tool cannot be qualified
as standalone, but only within the scope of
a particular certification project. The tools
that could be considered for qualification
are very simple: typically in-house created
utilities where the applicant holds all intel-
lectual property rights, maintains all tool
development data, and can reuse the tool
software artifacts on consecutive projects.
The qualification is accomplished within
the specific certification project and thus is
not clearly visible from the outside as devel-
opment tool qualification.

Technical Viewpoint
The second group of problems is related
to technical aspects. According to the DO-
178B interpretation, the development tool
needs to be qualified to the same level of
scrutiny as the appropriate application it is
helping to develop. However, there is a sig-

nificant difference between tool software
and application software. Applications run
on a target computer while tools operate
on a general-purpose workstation, typical-
ly closely interacting with a COTS operat-
ing system and conventional programming
environment. Considering this, several
DO-178B objectives are not applicable to
tool software and thus cannot be met.
There is also no general agreement on
what metrics would allow developers to
carry an independent tool assessment [6].

One often-repeated statement regard-
ing development tool qualification is the
requirement that “only deterministic tools
can be qualified.” The DO-178B refers to
determinism as “… tools which produce
the same output for the same input data
when operating in the same environment.”
The definition does not take into account
how the output is generated. By this defin-
ition, one may interpret that it is not
required to provide proof on the internal
behavior of a tool. An example of this can
be memory use for a tool running on the
host workstation in a multitasking, multi-
user, networked environment. The prob-
lem is to define what the object code for a
tool is. Does it include the operating system
(OS) of the host workstation? A tool clear-
ly needs to make explicit calls to the OS
routines, and any verification of these
would require full visibility of the host’s OS
and related high assurance of its operation.

The main function of a software
development tool is to transform, i.e.,
translate an input artifact into output. This
is why the qualification, if applicable,
should be focused on this translation
component of the tool functionality.
However, modern, complex software
development tools provide a variety of
other functions that are not directly relat-

ed to the translation process. The transla-
tion component is hidden deep inside the
tool, which causes problems with tool
qualification. Typically, there is no access
to a COTS tool’s life-cycle data, which
describe the tool’s requirements, design,
and code. Unless the tool has been devel-
oped in-house, the qualification efforts
may be doomed.

Potential Solutions
The qualification of a stand-alone devel-
opment tool is not feasible in the strict
sense of existing guidelines. Such concepts
as component-based software, software
reuse, and service history should be
explored [7] to identify the feasibility of
such qualification. The issues of tool ver-
sion control and the precise definition of
operational environment, constraints, and
limitations are the basis for starting discus-
sion about solutions to tool qualification.
The availability of extensive tool software
development data, often scarce for COTS
products, may be a challenge to ever
accomplish COTS tool qualification [8].

It could be conceivable to create an
independent lab dedicated to tool qualifi-
cation and encourage commercial vendors
to submit their product for assessment. A
similar approach is known from other
areas of verification and validation [9, 10].
Another idea would be to require certified
product applicants to disclose information
regarding the development tool use and
qualification effort by creating an FAA-
sponsored database for DO-178B certi-
fied products. This could face serious
objections from industry due to an appre-
hensiveness to disclose any information,
which may result in the loss of commer-
cial advantage. It would be possible to
research a potential for development tool

Requirements

Tool

Structural

Design

Tool

Functional

Design

Tool

Typically With

Code Generator

Functionality

Implementation

Tool

Testing

Tool

Target

(with RTOS)

or/and

Tool Categories

Analysis

Tool

e.g.:

VxWorks

QNX

OSE

Integrity

LynxOS

e.g.:

CodeTest

TestRT

VectorCast

Insure++

Integrated

Development

Environment

(IDE)

e.g.:

Tornado

Multi

e.g.:

Rhapsody

RoseRT

STOOD

Artisan

e.g.:

SCADE

Matlab

BEACON

Sildex

e.g.:

RapidRMA

TimeWiz

e.g.:

Reqtify

DOORS

SpecTRM

DOME

Figure 1:Software Tool Categories

Can

tool insert error

into airborne

software?

Will

the tool’s output

NOT be verified

(as specified in

DO-178B)?

Are

processes of

DO-178B eliminated,
reduced, or automated

by use of

tool?

TOOL MUST

BE QUALIFIED

NO

QUALIFICATION

NECESSARY

NO

NO

NO

YES

YES

YES

Figure 2:Conditions When a Software Development Tool Requires Qua

Figure 2: Conditions When a Software Development Tool Requires Qualification

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering April 2006

qualification using an approach different
than the one outlined in Section 12.2 of
DO-178B. Service history and formal
methods could both be potential options.

It appears that the industry has a
pressing need to come up with methods to
audit a tool that is independent of the spe-
cific program and applications using it.
This would require updating the guidelines
to consider a model-driven development
paradigm, redefine the qualification
process, and allow flexibility regarding
qualification to be less dependent on the
application program using the tool. A
more streamlined method to qualify devel-
opment tools and to keep them current as
technology advances would be useful.
Better guidance on how to apply service
history and how to address what has to be
done for incremental tool changes would
also be needed. These and other issues
have been discussed at the recent Tools
Forum [11]. The RTCA convened another
special committee (SC-205) with a charge
to recommend modifications to the exist-
ing DO-178B. The qualification of soft-
ware tools is being discussed and some
changes may be forthcoming.u

Acknowledgement
The presented work was supported in part
by the Aviation Airworthiness Center of
Excellence under contract DTFA-0301
C00048 sponsored by the FAA. Findings
contained herein are not necessarily those
of the FAA. Additional support was
received from the Florida Space Grant
Consortium under Grant No. UCF01-
E000029751.

References
1. Radio Technical Commission for

Aeronautics, Inc. “RTCA DO-178B,
Software Considerations in Airborne
Systems and Equipment Certifica-
tion.” Advisory Circular. Washington,
D.C.: RTCA, 1 Dec. 1992 <www.rtca.
org/downloads/ListOfAvailableDocs
APR%202005.htm#_Toc101071800>.

2. Federal Aviation Administration.
“RTCA Inc., Document RTCA/DO-
178B.” Advisory Circular No. 20-115B.
Washington, D.C.: U.S. Department of
Transportation, Nov. 1993 <www.air
web.faa.gov/Regulatory_and_Guid
anc e_L ib r a r y/ r gAdv i s o r yC i r c
ular.nsf/0/DCDB1D2031B19791862
569AE007833E7?OpenDocument>.

3. Radio Technical Commission for
Aeronautics, Inc. “RTCA DO-248B,
Final Report for Clarification of DO-
178B ‘Software Considerations in
Airborne Systems and Equipment
Certification’.” Advisory Circular.

Washington, D.C.: RTCA, 10 Dec.
2001 <www.rtca.org/downloads/List
OfAvailableDocsAPR%202005.htm#
_Toc101071717>.

4. Federal Aviation Administration.
“Software Approval Guidelines.” FAA
Order 8110.49. Washington, D.C.:
FAA, 2003 (Chapter 9 replaces FAA
Notice N8110.91 of 2001) <www.air
web.faa.gov/Regulatory_and_Guid
ance_Library/rgOrders.nsf/0/640711
B7B75DD3D486256D3C006F034F?
OpenDocument&Highlight=8110.49>.

5. Potter, Bill. “Use of the MathWorks
Tool Suite to Develop DO-178B Cer-
tified Code.” Slide No. 13. Honeywell,
May 2004 <http://faculty.erau.edu/
korn/ToolForum/potter.htm>.

6. Kornecki A., and J. Zalewski. Criteria
for Software Tools Evaluation in the
Development of Safety-Critical Real-
Time Systems. Proc. of PSAM-7/ Euro-
pean Safety and Reliability Conference,
Berlin, Germany, 14-18 June 2004.
London: Springer-Verlag, 2004 <http://
facu l t y. e rau .edu/korn/papers/
ESREL04KorneckiZalewski.pdf>.

7. Lougee, H. “DO-178B Certified Soft-
ware: A Formal Reuse Analysis Ap-
proach.” CrossTalk Jan. 2005
<www.stsc.hill.af.mil/crosstalk/2005/
01/0501lougee.html>.

8. Zalewski, J., W. Ehrenberger, F.
Saglietti, J. Gorski, and A. Kornecki.
“Safety of Computer Control Systems:
Challenges and Results in Software
Development.” Annual Reviews in Con-
trol 27.1 (2003): 23-37.

9. Brosgol, B.M. “ADA in the 21st
Century.” CrossTalk Mar. 2001
<www.stsc.hill.af.mil/crosstalk/2001/
03/brosgol.html>.

10. Adams, M., et al. “Conformance
Testing of VMEbus and Multibus II
Products.” Advanced Multi-Micro-
processor Bus Architectures. Ed. J.
Zalewski. Los Alamitos, CA.: IEEE
Computer Society Press, 1995: 392-399.

11. Embry Riddle Aeronautical Universi-
ty/FAA Software Tools Forum,
Embry Riddle Aeronautical University,
Daytona Beach, FL., May 18-19, 2004
<www.erau.edu/db/campus/software
toolsforum.html>.

About the Authors

Andrew J. Kornecki,
Ph.D., is a professor at
the Department of Com-
puter and Software Engi-
neering, Embry Riddle
Aeronautical University.

He has more than 20 years of research
and teaching experience in areas of real-
time computer systems. Kornecki con-
tributed to research on intelligent simula-
tion training systems, safety-critical soft-
ware systems, and served as a visiting
researcher with the Federal Aviation
Administration (FAA). He has been con-
ducting industrial training on real-time,
safety-critical software in medical and avi-
ation industries and for the FAA Certi-
fication Services. Recently, he has been
engaged in work on certification issues
and assessment of development tools for
real-time, safety-critical systems.

Dept. of Computer and
Software Engineering
Embry Riddle Aeronautical University
600 Clyde Morris BLVD
Daytona Beach, FL 32114
Phone: (386) 226-6888
Fax: (386) 226-6678
E-mail: kornecka@erau.edu

Janusz Zalewski, Ph.D.,
is a professor of comput-
er science at Florida Gulf
Coast University. Prior to
this, he worked for various
nuclear research institu-

tions, including the Data Acquisition
Group of Superconducting Super Collider
and Computer Safety and Reliability
Center at Lawrence Livermore National
Laboratory. He also worked on projects
and consulted for a number of private
companies, including Lockheed Martin,
Harris, and Boeing. Zalewski served as a
chairman of the International Federation
for Information Processing Working
Group 5.4 on Industrial Software Quality,
and of an International Federation of
Automatic Control Technical Committee
on Safety of Computer Control Systems.
His major research interests include safety-
related, real-time computer systems.

Dept. of Computer Science
Florida Gulf Coast University
10501 FGCU BLVD
Fort Myers, FL 33965
Phone: (239) 590-7317
Fax: (239) 590-7330
E-mail: zalewski@fgcu.edu

April 2006 www.stsc.hill.af.mil 23

Line of balance (LOB) was devised by
the members of a group headed by

George E. Fouch during the 1940’s to
monitor production at the Goodyear Tire
& Rubber Company [1]. It was also suc-
cessfully applied to the production plan-
ning and scheduling of the huge Navy
mobilization program of World War II
and during the Korean hostilities. Today,
LOB application has been further expand-
ed, making it suitable for a whole spec-
trum of activities ranging from research
and development through job-shop and
process flow operations.

In the context of managing a software
project, the LOB technique offers two
main advantages over the traditional Open
Trouble Reports (TRs) Chart [2]:
• It allows project managers to see, in

the middle of a project, whether they
can meet the schedule if they continue
working as they have been.

• It exposes process bottlenecks, allow-
ing the project manager to focus on
those points responsible for slippage.

The Open TRs Chart
To answer some of the questions raised at
the beginning of this article, project man-
agers usually resort to the Open TRs Chart
shown in Figure 1 or a variation of it.

The Open TRs Chart shows the cumu-
lative number of TRs written over time,
and its breakdown into open and closed
TRs. As the project progresses, the closed
line should converge toward the total line
and the open line towards zero. A closed
line that is not converging fast enough
toward the total or an open line that does
not approach zero signals to the project
manager the need to devote additional
resources to fix problems.

Variations of the chart include show-
ing a more detailed breakdown of the TR
status, and ratios between total and open
TRs [2, 3].

Despite all its usefulness, the Open TR
Chart lacks predictive ability and fails to
take advantage of past and present perfor-
mance data and TRs closure targets; i.e.,
how many TRs should be in a given state

by a given time to meet the project dead-
lines. In other words, although the chart
will give the project manager a gut feeling
about the situation, it would not answer
the questions of where are we in relation
to where we are suppose to be, or how
much better we should be doing to get
where we want to get by the time we want.

The TR Life Cycle
Typically, a TR will go through a number
of stages or states since it is reported until
it is closed (see Figure 2, page 24). Each of
these states corresponds to a milestone in
the process of answering a TR into which
the organization or project manager wants
to have visibility to evaluate progress, i.e.,
how many TRs have been reported, how
many of the reported TRs have been ana-
lyzed, how many of the analyzed were
rejected and so on. Elemental states could
be grouped into super sets for reporting
purposes, i.e., while the project manager
might be interested in how many have
been analyzed, assigned, implemented, or
integrated the steering group overseeing
the project might only been interested in
how many TRs were reported, how many
were closed, and how many were still
pending.

Most defect tracking systems will
implement this model or some variation

of it, time stamping each TR as they tran-
sition between states. This last feature
would allow the organization to produce
the lead-time information required by the
LOB method.

In addition to the state and timing
information, the TR includes other data
such as the severity of the problem. This
information could be used to filter the TR
data and apply the LOB method to a sub-
set of all the TRs reported and in the pri-
oritization of which TRs to fix first.

The LOB Method
Applied to TRs
The LOB method consists of the follow-
ing elements [4]:
• A number of control points and their

lead times to closing as illustrated in
Figure 3 (see page 24), at which
progress is to be monitored.

• An Objective Chart or target plan dis-
playing the cumulative closing sched-
ule as planned by the project manager
to meet a set deadline (Figure 4).

• The TRs Status Chart (see Figure 5,
page 25), which shows the actual num-
ber of TRs that have passed through a
given control point versus the number
that should have been passed (the
LOB) according to the plan.
The information contained in the

Using Line of Balance to Track the Progress of
Fixing Trouble Reports

You are the project manager of a large project and testing is uncovering faults, trouble reports are starting to pile up and the
release date is coming soon. Are they going to be fixed on time? What could you do to help? Are there any bottlenecks? Where
should you assign more resources? Does this scenario sound familiar? Have you been there? This article will explain how you
can answer these questions by using an old method called Line of Balance in a new way.

Eduardo Miranda
Independent Consultant

0

50

100

150

200

250

300

350

26
/0

7/
20

04

02
/0

8/
20

04

09
/0

8/
20

04

16
/0

8/
20

04

23
/0

8/
20

04

30
/0

8/
20

04

06
/0

9/
20

04

13
/0

9/
20

04

20
/0

9/
20

04

27
/0

9/
20

04

04
/1

0/
20

04

11
/1

0/
20

04

18
/1

0/
20

04

25
/1

0/
20

04

01
/1

1/
20

04

08
/1

1/
20

04

15
/1

1/
20

04

22
/1

1/
20

04

29
/1

1/
20

04

06
/1

2/
20

04

T
r
o

u
b

le
R

e
p

o
r
ts

Total

Open

Closed

Figure 1 Open TRs Chart

Trouble Reports Over Time

Figure 1: Open Trouble Reports Chart

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering April 2006

Objective Chart, together with the lead-
time information is used to calculate how
many TRs should be in a given state at a
given time.

Control Points
In LOB terminology, a control point is a
milestone or event that the project manager
wants to monitor. In the context of track-
ing TRs, the control points and states in the
TR life cycle would most likely coincide, but
this is not necessary1. For example, the pro-
ject manager might not find it useful to
track TRs in the rejected state and so this
state would not be considered a control
point. The lead time for a control point is
calculated using the following formula:

LeadTimen=0
LeadTimeq=n-1,n-2,..,n-1=TimeInStateq+LeadTimeq+1

Assuming that the median2 times a TR
spends in a given state are those shown in
Table 1, the lead-time calculations will
yield the results illustrated in Figure 3.

The Objective Chart
The Objective Chart shows cumulative, to be
verified TRs on the vertical scale and dates of
achievement along the horizontal scale. The
chart might also include a display of the
achievements so far.

The Objective Chart in Figure 4 shows
that the project manager has committed to
close 50 TRs by the end of September, 80
by the end of November, and 150 by the
beginning of the following year. The chart
also shows that as of mid-December
progress is slightly behind with the project
delivering around 75 fixed TRs instead of
the 80 promised.

TR Status Chart
The TR Status Chart provides quantitative

information with regards to progress, and
whether or not there is a bottleneck on the
process.

The chart portrays the actual number
of TRs that have passed through each
control point against the number that
should have been passed according to the
plan. These last quantities are called the
LOB. The difference between the LOB
and the top of the bar for each control
point is the number of TRs behind or
ahead of schedule.

Notice that the shape of the LOB will
change daily even if there are no new TRs
reported, since its calculation depends on
the planned curve of the Objective Chart
and the status date.

The TR Status Chart shows that there
are almost 180 TRs reported so far, 30
more than what were planned to fix
according to the Objective Chart. This sig-
nals the need to update the plan. It also
tells us that TR implementation is on track
as the actual column and the LOB line for
that control point coincide, but that we are
falling behind in their integration and ver-
ification. This suggests that adding more
people to implementation activities will
not help recoup the delay, but that addi-
tional resources could be used in integra-
tion and verification activities.

The LOB for each control point is cal-
culated as follows:

a1 + b1t t1<_ t <t2

a2 + b2t t2<_ t <t3

LOBq=1,2,..,n
.
.
.

am + bmt tm<_ t <tm+1

{
bi = yi+1- yi

ti+1 - ti

yi and yi+1 are the number of TRs to be
fixed by time ti and t1+1 respectively, as
planned by the project manager and
captured in the objective chart.

ai = yi - biti

t =TimeNow+LeadTimeq

The idea behind the procedure is simple.
If it takes an average of 10 days for a TR
to go from a given state to the completion
state, today’s status for that state should
be equal to the number of TRs that would
have to be completed according to the
plan 10 days from now. See Figure 6 for a
graphical example.

In Figure 6, the chart on the left shows
the planned line from Figure 4, while the
chart on the right shows the scheduled

Figure 2: Typical TR Life Cycle

Table 1: Lead-Time Calculations

Figure 3 The process of solving a TR and its corresponding lead times

Reported

Analyzed

Assigned

Implemented

Integrated

Verified

5

Days

11

Days

19

Days

25

Days

30

Days

L
e
a
d

T
im

e
s

Figure 3: The Process of Solving a TR and Its
Corresponding Lead Times

Figure 4: The Plan Proposed by the PM to Clear the TR Backlog

To Be Verified

0

20

40

60

80

100

120

140

160

12-Jun-04 1-Aug-04 20-Sep-04 9-Nov-04 29-Dec-04 17-Feb-05

Planned

Actual

Figure 4 The plan proposed by the PM to clear the TR backlog

T
r
o

u
b

le
R

e
p

o
r
ts

Control Point Time in State

5

6

8

6

5

0

Lead Tim

5 + 25 = 30

6 + 19 = 25

8 + 11 = 19

6 + 5 = 11

5 + 0 = 5

0

e

Reported

Analyzed

Assigned 8

Implemented 6

Integrated 5

Verified 0

Open

Figure 2 Typical TR life cycle

Reported

Pending

Analyzed

Assigned

Implemented

Integrated

Closed

Verified Rejected Duplicated

Using Line of Balance to Track the Progress of Fixing Trouble Reports

April 2006 www.stsc.hill.af.mil 25

line from Figure 5. We obtained Figure 5’s
scheduled line by finding the interception
between the TimeNow line and the curve in
the objective chart (the a1 +b2t,...,am + bmt
function above), which yields the value for
the Verified Control Point, that is the
number of TRs that should be on that
state as of Dec. 12, 2004. The interception
between the curve and the line at TimeNow
+ LeadTimeImplemented yields the LOB value for
the Implemented Control Point.

Summary
By providing a credible early warning
about bottlenecks in the process of fixing
TRs, the LOB method helps project man-
agers take corrective actions such as allo-
cating more resources or prioritizing the
work when there is still time to do it.

In terms of the data required to imple-
ment the LOB technique, most of it
should be readily available from your
defect tracking system or could be derived
from it with a few calculations implement-
ed in Excel or any other spreadsheet.u

Acknowledgements
Thanks to Jeremy O’Sullivan and Gae-
tano Lombardi from Ericsson; Alain
Abran from École de Technologie
Supérieure - Université du Québec; and
Raul Martinez from RMyA for their com-
ments on earlier versions of this article;
and to John Corcoran from Ericsson for
the TR statistics.

References
1. Harroff, Noel N. “Line of Balance.”

NNH Enterprise, 7 June 2003 <www.
nnh.com>.

2. Pussacq Laborde, Juan. “Quality Con-
trol = Project Control?” Second Soft-
ware Engineering Process Group La-
tino America Conference. Mexico, 2005
<www.esi.es/SEPGLA/index_eng. html>.

3. Florac, William A. “Software Quality
Measurement: A Framework for
Counting Problems and Defects.”
CMU/SEI-92-TR-22. Pittsburgh, PA:
Software Engineering Institute, 1992.

4. Miranda, Eduardo. Running The
Successful Hi-Tech Project Office.
Artech House, 2003.

5. Defense Acquisition University.
Scheduling for Program Managers.
Defence Systems Management. College
Press, Oct. 2001 <www.dau.mil/pubs/
gdbks/scheduling_guide.asp>.

Notes
1. The control points are likely to be a

subset of the TR states. To avoid con-
fusion, do not create additional control
points.

2. The median is preferred to the arith-
metic mean (average) to prevent rare but

complex TRs from skewing the value of
the statistic to the right.

Figure 6: The LOB for the Control Point

About the Author

Eduardo Miranda is a
system professional with
20 years of experience in
the development of soft-
ware-based products and
information management

systems. Currently, he works in the devel-
opment of new estimation and planning
approaches for research and develop-
ment projects. Miranda is affiliated with
the Université du Québec à Montréal as
an industrial researcher, and is a member
of the International Electronics and En-
gineers. He has published more than 10

papers in software development method-
ologies, estimation, and project manage-
ment and is the author of “Running the
Successful Hi-Tech Project Office.”
Miranda has a Master of Engineering
degree from the University of Ottawa
and a master’s degree in project manage-
ment from the University of Linkoping.

119 Harwood Gate
Beaconsfield, Quebec
Canada H9W 3A5
Phone: (514) 697-0594
E-mail:emt.miranda@computer.org

0

20

40

60

80

100

120

140

160

180

200

Figure 5 TRs status chart

R
ep

or
te

d

A
ss

ig
ne

d

A
na

ly
ze

d

Im
pl
em

en
te

d

In
te

gr
at

ed

V
er

ifi
ed

T
r
o

u
b

le
R

e
p

o
r
ts

in
S

ta
te

Actual

Scheduled (LOB)

Progress at Status Points as of 12/12/2004

Figure 5: Trouble Reports Status Chart

0

20

40

60

80

100

120

140

160

R
ep

or
te

d

Ass
ig
ne

d

Ana
ly
ze

d

Im
pl
em

en
te

d

In
te

gr
at

ed

Ver
ifi
ed

0

20

40

60

80

100

120

140

160

1-Aug-04 20-Sep-04 9-Nov-04 29-Dec-04

To Be Verified Progress at Status Points as of 12/12/2004

TimeNow + LeadTimeImplemented

TimeNow Line

(12/12/2004)

T
r
o

u
b

le
R

e
q

u
e

s
ts

Departments

26 CROSSTALK The Journal of Defense Software Engineering April 2006

Tantara Inc.
www.tantara.ab.ca/info.htm
Tantara offers practical advice for software process improvement
and software quality assurance/management, including the
International Organization for Standardization (ISO) 9001 (ISO
9000-3, TickIT), ISO 12207, ISO 15504 (Software Process
Improvement and Capability dEtermination [SPICE]), the
Software Engineering Institute’s Capability Maturity Model®

(CMM®) for Software, CMM IntegrationSM, and more. Tantara’s
Web site is updated quarterly and offers articles (online, compar-
isons, frameworks); a bulletin board of events, news, and statistics;
job aids; and books and training materials.

Software Process Improvement
in Regions of Europe
www.cse.dcu.ie/spire
The Software Process Improvement in Regions of Europe
(SPIRE) was a project funded by the European Commission
involving partners in Austria, Ireland, Italy, Sweden, and
Northern Ireland. SPIRE’s objective is to help small software

development units (SUDs) – employing a software staff no larg-
er than 50 – to get business benefits from investment in the
Software Process Improvement Network (SPIN) and to share
their experiences with others. The project helped nearly 60
SUDs in SPIRE to carry out short, cost-effective improvement
projects. Their experience has been captured in the European
Analysis Report, which provides an analysis of the impact of
SPIN within SUDs throughout Europe, and identifies trends
and key features for future planning or implementation.

TickIT
www.tickit.org
TickIT guides the developer to achieve high-quality software
within the framework of the ISO 9001. TickIT applies to all
types of information systems that involve software development
processes in the product life cycle. Typical systems suppliers
include system houses, software houses, and in-house develop-
ers. TickIT disciplines are also relevant to the development of
embedded software. A full definition of the scope of TickIT is
included in the TickIT Guide, available on the Web site.

WEB SITES

Dear CrossTalk Editor,
In CrossTalk’s February issue, Ken Schwaber commented
on my December article, titled “Agile Software Development
for the Entire Project.” I am in firm agreement with him theo-
retically and philosophically. However, the open water reality of
working in agile software development brings home how diffi-
cult agile software can sometimes become. In both thought and
practice, it requires us to be open and willing to change to keep
up with evolution. After all, if there is one thing that agile
processes tell us, it is to embrace change. Perhaps it requires
more change of the traditional mindset than one of the orga-
nization.

As such, the agile community has been working diligently to
best understand how various roles – such as test – fit into agile
software development processes. If one has the opportunity to
attend an agile conference, one notices entire tracks devoted to
testing the results of agile processes. Indeed, most organizations
end up integrating testing on their own, using a Chinese menu
approach [Bob Martin, keynote Agile Conference 2005] where they
mix and match various agile practices to construct their own
processes.

Working with on-site customers is always our best-case sce-
nario. The feedback is direct, constant, and immediate.
Realistically, however, many projects cannot bring customers
on-site for perfectly good reasons. After all, customers have
jobs too. What do we say to those projects? You can’t be agile?
No, we shift a little and bring in roles to go to work with the
customers on their site. Customer validation is an extremely
important part of any real-world agile process.

This article demonstrates the need for a next generation
(XP is already on version 2.0) of agile processes with ways of
dealing with customers who cannot spend time on-site, larger
agile projects, distributed projects, and/or the need for testing
of the delivered systems on behalf of the customer. You can
consider any one of these conditions a barrier to using some of

the first-generation processes. Of course, these new processes
will have to continue to promote adaptive, self-managing teams
in a team-oriented environment.

I wish to thank Mr. Schwaber for reading my article. I always
appreciate his from-the-heart feedback. My goal is to strive to
be true to agile methodology, while addressing the real-life
ongoing, ever-changing, ever-evolving needs of our customers
and our exciting industry.

Granville “Randy” Miller
Microsoft

<randymi@microsoft.com>

Dear CrossTalk Editor,
I very much liked the BackTalk column about software
usability titled “Push for Cheese: A Metaphor for Software
Usability” by Nicole Radziwell and Amy Shelton in the
December 2005 issue of CrossTalk. It was very thought-
provoking. I frequently get annoyed at software in which it is
either too hard or too easy to invoke a selection or option, and
it results in something I did not intend. Your suggestions for
how to overcome this problem were right on. It is very challeng-
ing to have a user community that (a) is very diverse in its opin-
ions on what makes for good software usability and, (b) as they
get more familiar with the software, their preferences on how it
should work change.
Thank you for drawing visibility to this seemingly simple but

in actuality very complex issue. Hopefully it will prevent prob-
lems such as operator-machine issues coming up right before
going to final system test that should have been addressed much
earlier in the development.

Al Kaniss
Naval Air Systems Command
<alan.kaniss@navy.mil>

LETTERS TO THE EDITOR

April 2006 www.stsc.hill.af.mil 27

At NASA Goddard Space Flight Center,
we analyzed several safety-critical soft-

ware systems with sizes ranging from
approximately 50,000 to more than 500,000
lines of code (LOC). These systems’ archi-
tecture included a reusable software core
linked to mission-specific software that
resulted in complete, unique ground support
systems for spacecraft control. Each space-
craft required both new, mission-specific
source code and an interface to the reusable
core. Because of technology changes, the
reusable core itself evolved, increasing in
size more than five-fold. The software sys-
tems have been somewhat superseded by
commercial off-the-shelf products.

The evolving, reusable core had a much
lower defect ratio (defects per thousand
LOC [KLOC]) for the reusable core than
similar systems in the same application
domain. The defect ratios of 0.034 and
0.075 for the latest two versions of the
reusable core discussed here are far lower
than the range of 0.12 to 1.89 for similar
systems. The extremely low defect ratio of
the core was even more impressive in view
of Les Hatton’s statement that very few
systems, even safety-critical ones, have ever
stayed below one defect per KLOC [1].

The Model
What caused the unusually high quality of
the evolving, reusable software core? Did
the reused part of the core have a low
defect ratio simply because it had been
operational for so long in a safety-critical
domain? If so, we should expect defects
per KLOC to follow an exponential distri-
bution of the form a constant times e-K*T.

On the other hand, was the new code
good because it underwent stringent
analysis and testing? If so, we should
expect a linear relationship, reflecting the
increase in code size.

These two questions led to a simple
model for the number of defects in each
release as the sum of an exponential dis-
tribution representing defects caused by
reused code and a linear expression repre-
senting the defects in the new source
code. The model is:

DEFECTS = (REUSED * e-K*T + NEW) * M *
KLOC

where,

T is the time between releases. REUSED
and NEW are the percentage of reused
and new lines of code in a release,
respectively.

KLOC is the size of the release.

The constants K and M are discussed later.

Calibration of the Model
Calibration of the model requires calcula-
tion of the constants REUSED,NEW, K,
and M. We already know KLOC and want
to estimate DEFECTS. The overall reuse
percentages between releases clustered
around 80; hence, the value of NEW was
.20 and, thus, our the model became:

DEFECTS = (.80 * e-K*T + .20) * M * KLOC

To compute the constant K, we entered the
defects and the KLOC for each release into
an Excel spreadsheet, one entry per release,
and then computed the exponent K in the
exponential distribution, using the Excel
LOGEST function to compute K. This
constant was, to two decimal places, 0.79.

The constant M represents the change
scale between LOC and DEFECTS. To
compute M, we created a third column in
the Excel spreadsheet, representing the
difference between the observed number
of defects for previous releases and what
is predicted by the partial formula (.80 * e-
.79*T + .20) * KLOC, one entry per release,
and then computed M using the Excel
SLOPE function. This constant M was, to
two decimal places, 0.65, making the
model for this domain:

DEFECTS =
(.80 * e-.79*T + .20) * 0.65 * KLOC

Analysis and Future Work
It is possible to fine-tune the model more
than what we presented here. Specific val-
ues can be used instead of the averages to
improve accuracy. Using different multi-
pliers of REUSED and NEW can
improve estimation, also.

Measures based on exponential distrib-
utions frequently are used to assess system
quality, reliability, and to stop testing when
the expected number of errors remaining
meets the objective error rate. As far as we

know, their use in conjunction with soft-
ware reuse to predict faults is new.

Note that applying reuse measure-
ments to evolving code is somewhat con-
troversial. Indeed, Jeffrey Poulin [2] and
others recommend against attempting
software reuse when the underlying code is
not stable. The author recommends it in
certain circumstances [3], while others are
neutral or do not comment on the issue.
Readers are encouraged to provide their
experiences via e-mail to the author.u

Acknowledgement
This research was partially supported by
National Science Foundation grant num-
ber EIA-0324818.

References
1. Hatton, L. “Does OO Sync With What

We Think?” IEEE Software 15.3 (May,
1998).

2. Poulin, J.S. Measuring Software Reuse:
Principles, Practices, and Economic Mod-
els. Reading, MA: Addison-Wesley, 1997.

3. Leach, R.J. Software Reuse: Methods,
Costs, and Models. New York:
McGraw-Hill, 1996.

How to Relate Quality and Reuse in Evolving Systems

This article suggests a model to predict the quality of software developed over time, where the reusable components are also
evolving over time.

Dr. Ronald J. Leach
Howard University

About the Author

Ronald J. Leach, Ph.D.,
is professor and chair of
the department of sys-
tems and computer sci-
ence at Howard Univer-
sity where he performs

research on software engineering with
special interest in reuse, metrics, and
fault tolerance. He has a Bachelor of
Science, Master of Science, and doctor-
ate degree in mathematics from the
University of Maryland, and a Master of
Science in computer science from Johns
Hopkins University.

Dept. of Systems and
Computer Science
Howard University
Washington, DC 20059
Phone: (202) 806-6650
Fax: (202) 806-4531
E-mail: rjl@scs.howard.edu

28 CROSSTALK The Journal of Defense Software Engineering April 2006

When did free come to mean free after
rebate? When did cost become the

China cost? And when did Six Sigma
become something other than a statistical
notion? Or have you not noticed that the
term Six Sigma no longer means a statistical
measure for variation? For every organization
that attempts to use six sigma as a statisti-
cal measure of process improvement,
three other organizations use it merely to
describe a process improvement effort.
Most of these organizations have no
intention of using six sigma statistically,
but it likely impresses the folks higher up
in the food chain.

Affixing lean to the term, as in Lean
Six Sigma (LSS), is currently an institu-
tional silver bullet. Do not feel left out if
you have not been exposed to LSS; one
Internet search found only about 125,000
LSS-related sites, but more than 1.7 mil-
lion sites for Six Sigma. Very few of these
sites advocate six sigma’s statistical mean-
ing, contributing to the miscommunica-
tion regarding Six Sigma processes.

As with most trendy initiatives, LSS
has it own status symbols: green belts,
black belts, and an assortment of colors
and variations depending on the accredit-
ing organization. In addition, LSS has a
lexicon, words like kaizen, kaikaku, kan-
ban (yes, there are more than just k
words). There is one more Japanese word
that the LSS industry may have forgotten:
it is muda, or the word for waste. Without
applying statistical measurement, organi-
zations may be wasting their process
improvement resources.

The application of LSS may bring
numerous well-intended results, including
defect reduction, work in progress reduc-
tion, cycle time reduction, cost savings,
fewer hand-offs and queues, minimized
changeover time, workload leveling, and
more. Organizations in pursuit of process
improvement are often well-advised to
consider LSS to diagnose, improve, and
measure their processes.

Motorola Corporation gets much of

the credit for popularizing Six Sigma and
the phrase 3.4 defects per million – the battle
cry of the Six Sigma world. Simply re-stat-
ed, Six Sigma has come to be synonymous
with no more than 3.4 defects per million
opportunities (DPMO). An opportunity
might be defined as a keystroke or a
mouse click, depending on whether the
process being measured is developing
software or writing an article.

Often, the value 3.4 DPMO is fol-
lowed with a footnote or an asterisk; the
fine print typically ignored. Six Sigma pro-
ponents claim that the 3.4 DPMO is the
long-term process performance after the
occurrence of a sigma shift. The sigma shift
is a 1.5 sigma difference from 6 to 4.5
sigma performance. The underlying
assumption is that short-term perfor-
mance (of say 6 sigma) is really 4.5 sigma
in the long term as entropy sets in. Sigma
shift translates to more defects per million
– 1,700 times more. Statistical 6 sigma is
not 3.4 DPMO, it is actually 2 DPBO; that
is defects per billion opportunities, a differ-
ence factor of 1,700.

Did you just get a sense of uneasiness?
Remember that most companies claiming
the use of six sigma for process improve-
ment are not using either of these statisti-
cal values; they are merely targeting their
processes for measured improvement.

What if performance improved over
time, though, in contrast to being subject
to entropy? A sigma shift for better would
be a 7.5 sigma process. A 7.5 sigma
process would have three defects per hun-
dred trillion (3.1 DPhTO [Schofield nota-
tion]).

While a 7.5 sigma process seems an
unreasonable expectation, at this rate the
commercial airline industry would
encounter a fatal event every 17,500 years,
U.S. highways would incur 23 deaths per
year instead of 40,000, and three deaths
per annum would be realized from pre-
scription defects instead of 7,000.

But a 7.5 sigma performance is not
unreasonable in the computing world.

Consider for a moment a teraflop machine
that operates at one trillion floating point
operations per second. In a mere 100 sec-
onds, three defects would be generated.
Within one year, 1,246,080 defects would
be generated.

It gets worse. Within the next year (or
so) the petaflop machine will be released.
A machine operating at that speed could
generate over more than one billion
defects per year if operating at 7.5 sigma.
Do you feel more unease? Do not get pre-
maturely paranoid – a petaflop machine is
unlikely to appear on your desktop any-
time soon.

Fortunately, hardware performs far
more reliably than the sigma levels just
described suggest, but that does not apply
to software. Software defects cost the U.S.
economy almost $60 billion a year [1]. Of
course, software defects are not limited to
software. Auto companies such as BMW,
DaimlerChrysler, Mitsubishi, and Volvo
have all experienced software-related
product malfunctions (defects) that
include engine stalls, wiping interval prob-
lems, gauge illumination defects, and
transmission gear errors [2]. Software
technicians in Panama were charged with
murder after 21 patients died from gamma
ray overdoses in just 40 months [3]. Sorry,
no sigma levels released. And yet, 62 per-
cent of polled organizations lack a soft-
ware quality assurance group [4].

Practicing statistical something sigma is
an industry best practice. The Software
Engineering Institute’s Capability Maturity
Model® Integration recognizes the rele-
vance of measurements and analysis by
placing it prominently as a Level 2 Process
Area in its staged representation. Later in
the model, there is the need to identify
assignable and common cause variation at
maturity Levels 4 and 5, respectively.

So when did statistical notions become
ambiguous with words like Lean and Six
Sigma? Perhaps organizations should raise
an alert when the term six sigma is used to
investigate its contextual alignment with

When Did Six Sigma Stop Being a Statistical Measure?
Joe Schofield

Sandia National Laboratories

The term Six Sigma is widely used as an approach for process improvement and learning. It is a disciplined, structured, data-
driven methodology to solving problems. Along the path to popularity, Six Sigma lost its meaning as a statistical measure and
instead inherited the meaning of merely another measurement program. Organizations that intend to employ Six Sigma ought
to consider which definition of six sigma is their target: a process improvement approach, or a statistical measure for varia-
tion. This article explores the significance of the differences between six sigma and Six Sigma. Read on if you dare.

Open Forum

When Did Six Sigma Stop Being a Statistical Measure?

April 2006 www.stsc.hill.af.mil 29

expectations, visions, and goals. Perhaps,
too, the process improvement initiative
will have an increased likelihood of suc-
cess – regardless of what it is called.

Conclusion
Given the abundance of quality improve-
ment and Six Sigma tools available to
organizations today, incorporating six
sigma measurements might not be that
difficult – if the organization chooses to
do so. For instance, brainstorming tech-
niques for current state weaknesses could
be validated with statistical data (perhaps
not to a six sigma threshold, but the intro-
duction of any statistical validation on
root cause analysis might provide relevant
insight into weaknesses). Root causes list-
ed on cause and effect (Fishbone) dia-
grams could similarly be validated with
statistical data collection. Process flow
maps could use the distribution of a sta-
tistical sample in assigning hands-on and
queue time measurements. Each of these
uses of statistics would begin to reintro-
duce the use of quantitative measures into
the Six Sigma movement, perhaps leading
to the reemergence of six sigma quality
thresholds.

Mark Twain probably was not thinking
about Six Sigma when he described the

three types of lies as lies, darned lies (para-
phrased), and statistics, but his quote
seems apropos given how Six Sigma pro-
ponents use six sigma today. Six Sigma
should be reserved for, well, six sigma per-
formance – a statistical measure for varia-
tion. Maybe then quality will translate to
fewer product recalls, lower costs will
mean that costs are decreased, and six
sigma performance will equate to two
defects per billion – maybe that is asking
too much. Distinguishing between statisti-
cally measured performance and mea-
sured performance can help assess the
true progress of an improvement effort.
When applying Six Sigma for process
improvement, do not leave out the six
sigma.u

References
1. Zaino, Jennifer. “Behind the

Numbers.” Information Week. 29 Mar.
2004: 94.

2. Sullivan, Laurie. “Software Quality.”
Information Week. 15 Mar. 2004: 56.

3. Gage, Debbie, and John McCormick.
“We Did Nothing Wrong.” Baseline-
The Project Management Center, 4
Mar. 2004.

4. Surmacz, Jon. “Why Software Quality
Stinks.” CIO. 1 Dec. 2003: 28.

About the Author

Joe Schofield is a distin-
guished member of the
technical staff at Sandia
National Laboratories.
He is a trained Lean Six
Sigma Black Belt, chairs

the organization’s Software Engineering
Process Group, is the Software Quality
Assurance Group leader, and is account-
able for the introduction of the Personal
Software ProcessSM and Team Software
ProcessSM. He has dozens of publications
and conference presentations. Schofield
chairs the Management Reporting
Committee for the International
Function Point Users Group, is active in
the local Software Process Improvement
Network, and has taught graduate level
software engineering classes since 1990.

Sandia National Laboratories
MS 0661
Albuquerque, NM 87185
Phone: (505) 844-7977
Fax: (505) 844 2018
E-mail: jrschof@sandia.gov

Departments

30 CROSSTALK The Journal of Defense Software Engineering April 2006

BACKTALK

April 2006 www.stsc.hill.af.mil 31

Readers of my BackTalk columns will already know that I
am a Civil War buff, and my recent move to New Mexico

brought new sites to explore. I did not realize that the West was
the site of many important Civil War battles. In fact, within 60
miles of Albuquerque, the Battle of Glorieta Pass was fought.
This little-known battle has been called the Gettysburg of the West.
It was such an important Northern victory that it effectively sig-
naled the end of Confederate influence in the Southwest.

The Confederates were interested in the West. They wanted
recognition by Mexico, and they also wanted the gold and silver
that was in Colorado, Nevada, and California. Unfortunately for
the Confederates, New Mexico (which fought on the Union side)
stood in the way. Texas, a Confederate state, sent forces up the
Rio Grande. The Confederates captured Fort Fillmore (near Las
Cruces, N.M.), proceeded to win the Battle of Valverde, and
advanced north up the Rio Grande. The Confederates eventual-
ly occupied Albuquerque and Santa Fe. Their primary objective
was to take Fort Union, N.M. – an important Union federal sup-
ply center. Fort Union sat directly on the Santa Fe Trail, and is
about 25 miles from present-day Las Vegas, N.M. It is about 50
miles northeast of Santa Fe as the crow flies (assuming the crow
can fly over pretty rough mountain passes), but 100 miles away
via the Santa Fe Trail. To combat the Confederate advance,
Union forces from Fort Union, augmented by a regiment of First
Colorado Volunteers, advanced south on the Santa Fe Trail
towards Glorieta Pass.

The Battle of Glorieta Pass itself was fought from March 26-
28, 1862 (the Battle of Gettysburg also took three days). For the
first two days of the battle, there was mixed fighting at several
locations near Santa Fe with inconclusive results. On March 28,
the Confederates advanced toward Fort Union, initially heading
southeast towards Glorieta Pass. In what proved to be a very
unfortunate decision, the Confederates left all their supplies in a
wagon train at Cañoncito, about halfway between Santa Fe and
Glorieta Pass. This wagon train was guarded by a single cannon
and a handful of noncombatants. This poorly defended supply
train (about eighty wagons) contained the entire Confederate
reserves of ammunition, baggage, food, forage, horses, mules,
and medicines.

The Confederate forces proceeded toward Fort Union and
met the advancing Union forces at Pigeon’s Rest, slightly east of
Glorieta Pass. The Confederates thought their supplies were safe
– after all, for Union forces to reach the Confederate supplies,
the Union forces would have to go through the Confederates.
However, as the battle raged around Pigeon’s Ranch, a small
group of Union forces were dispatched to find and destroy the
Confederate supply train. Since the Union forces consisted of
frontiersmen from mining districts near Denver, mountainous
terrain did not deter them. The Union dispatchment avoided the
Santa Fe Trail, bypassed the Confederate forces, and crossed over
16 miles of mountainous terrain. They then located, attacked,
and destroyed the entire Confederate supply wagon train at
Cañoncito. The Union troops retraced their route and rejoined
the main Union forces after dark (as the battle was ending).

The Confederates went to sleep that night thinking they had
won this battle, just as they had won all their previous battles in
New Mexico. The Union forces also thought they had won.

Casualties on each side were about the same – about 50 killed
and 60 wounded. But it wasn’t this relatively indecisive battle that
was important. Unbeknownst to the Confederates, the destruc-

tion of their supply train checked the advance of the
Confederate forces in New Mexico. Just as the Battle of
Gettysburg was the high-water mark of the Confederacy, the Battle of
Glorieta Pass was definitely the high-water mark of the Confederacy in
the Southwest.

The Confederates’ lack of supplies eventually forced them to
retreat, backtrack down the Rio Grande, and return to San
Antonio. It is now recognized that the Battle of Glorieta Pass
effectively stopped a Confederate invasion in the Southwest. The
battle signaled the end of a valorous Confederate presence along
the Rio Grande in the War of Northern Aggression (I AM a
Southerner and a Texas A&M grad – it was either put this in or
get tarred and feathered at my next family or class reunion).

What does all this possibly have to do with maturity models?
Because simply developing code is like fighting a battle. Winning
one battle is not enough. To win the war, you need to be able to
fully support all your assets. In the battle for the Southwest along
the Rio Grande, the Confederates won most, if not all, of the
battles. However, it was the lack of support and assets that cost
them the war.

It doesn’t really do you any good to deliver code to your users
if you cannot provide support for maintenance and updates. You
need a process (or maturity model) in place to ensure that you
can provide long-time support. Just as losing the supply train
spelled the end of the Confederacy along the Rio Grande, prob-
lems with life-cycle support can easily spell the end of your
development effort.

Maturity models have to support everything you are going to
need to eventually win the war, not just the upcoming battle. If it
doesn’t, then you need to implement whatever process it takes. If
you are only worried about the current skirmish, ask yourself this:
“Is my lack of configuration management, risk management, or
requirements management going to eventually cost me the victory?”
Short-term thinking wins battles. Long-term thinking wins wars.

Do you have a maturity model in place? Does it work? If
not, then why aren’t you fixing it?

Do you want to win a battle, or win the war?

— David A. Cook, Ph.D.
Senior Research Scientist (and Civil War Buff)

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Additional Reading
1. See <www.santafetrailnm.org>, <http://web.archive.org/

web/20001002020035>, <www.nmhu.edu/researchsftrail/
mapsft1.gif>, <http://web.archive.org/web/20001002020035/>,
and <www.nmhu.edu/research/sftrail/mapsft1.gif> for
maps and more information on Glorieta Pass.

2. Information in the preceding paragraphs has been taken from
an article by Don E. Alberts at <www.tsha.utexas.edu/
handbook/online/articles/GG/qfg2.html>, <http://www.
tsha.utexas.edu/handbook/online/articles/GG/qfg2.html>,
and also from <http://history.sandiego.edu/gen/civilwar/
14/glorieta.html> and <http://history.sandiego.edugen/
civilwar/14/glorieta.html>. Additional information has been
taken from personal trips to New Mexico’s Las Cruces,
Glorieta Pass, Pecos National Historical Park, and Ft Union
National Monument. And no, I am not in the employ of the
New Mexico Department of Tourism.

Win the Battle, Lose the War

CrossTalk / 309 SMXG/MXDB
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	Alternate Mixes for CMMI
	Army Simulation Program Balances Agile and Traditional Methods With Success

	Managing Cultural Changes in Your Organization
	Cooperative Appraisals for Capability and Risk Evaluation

	Software Engineering Technology

	The Qualification of Software Development
Tools From the DO-178B Certification Perspective
	Using Line of Balance to Track the Progress of
Fixing Trouble Reports
	How to Relate Quality and Reuse in Evolving Systems

	Coming Events

	Call For Articles
	Letters to the Editor

	Web Sites
	Visit CrossTalk at SSTC
	SSTC Conference Ad

	BackTalk

	Back Cover

